微生物学与免疫学系2022年1-8月在Nucleic Acids Research, EMBO Journal、Nature Communications、Plant Cell、ISME Journal、eLife、Journal of Nanobiotechnology等主流杂志上发表23篇高水平论文。
病毒与寄主互作领域:李大伟和张永亮课题组揭示了大麦条纹花叶病毒(BSMV) 编码的多功能γb蛋白棕榈酰化作为分子开关引导病毒由复制向运动动态转换的新机制 (Yue et al., 2022, EMBO Journal), 阐明了γb蛋白通过靶向水杨酸 (SA) 信号通路关键组分TRXh1以削弱寄主防御的新策略 (Jiang et al., 2022, Plant Physiology), 以及S-腺苷甲硫氨酸脱羧酶 (SAMDC3) 通过促进γb蛋白的泛素化修饰来负调控病毒侵染的新机制 (Li et al., 2022, New Phytologist);他们还揭示了MAPKKKα介导的植物免疫发挥抗病毒作用,而病毒编码的外壳蛋白通过靶向14-3-3a-MAPKKKα功能模块来削弱寄主的防御反应的新机制 (Gao et al., 2022, Nature Communications)。王献兵课题组揭示了植物寄主和昆虫介体MAPK信号通路通过直接磷酸化植物弹状病毒的核衣壳蛋白调控病毒复制模板形成的分子机制 (Ding et al., 2022, Plant Cell);解析了植物寄主CK1激酶调控植物弹状病毒的磷蛋白的相变,从而影响病毒毒质的形成过程 (Fang et al., 2022, eLife);阐明了植物弹状病毒辅助蛋白通过负调控JAZ蛋白的降解,抑制JA信号通路,吸引昆虫介体传播病毒的分子机制 (Gao et al., 2022a, Plant Physiology)。
根瘤菌共生固氮领域:田长富课题组发现广宿主费氏中华根瘤菌的多效转录调控因子MucR主要靶向富含AT的DNA序列, 直接调控多个共生和环境适应性功能基因模块 (Jiao et al., 2022, ISME Journal);MucR靶向高亲和钾离子吸收系统及其上游调控线路PTSNtr-KdpDE的编码基因, 该级联系统调控结瘤效率(Feng et al., 2022, mBio);MucR正调控铁代谢转录因子RirA编码基因的转录, RirA负调控水平转移而来的铁载体合成与吸收通路的转录, 防止根瘤内铁过载及共生体的过早裂解, 维持固氮效率 (Liu et al., 2022, mBio);该团队进一步解析了MucR寡聚化和桥连DNA的分子机制,并发现趋同演化的其他拟核结合外源基因沉默蛋白可替代MucR实现高AT共生基因在根瘤菌底盘中的高效适配 (Shi et al., 2022, Nucleic Acids Research).
真菌遗传与表观遗传领域:何群课题组利用模式生物粗糙脉孢菌为实验材料,证明 DMM-1通过抵抗H3K56位点的去乙酰化修饰和H2A.Z的装配所介导的异染色质扩散过程发挥边界功能,从而严格地界定染色质结构的不同区域 (Zhang et al., 2022, Nucleic Acids Research);还发现组蛋白去乙酰化酶HDA-2 通过改变染色质的状态影响组蛋白变体H2A.Z在cat-3基因 promoter/TSS区域的交换进而调控cat-3基因表达 (He et al., 2022, mBio);粗糙脉孢菌ADA-21蛋白可作为转录抑制因子,通过影响cat-3基因区域的核小体密度和转录激活因子的募集进而调控cat-3的转录水平。而Bub3则是ADA-21 的上游调控因子, 维持其蛋白稳定性间接参与cat-3的表达调控,阐明了新的过氧化氢酶基因转录抑制调控方式 (Zhou et al., 2022, PLoS Genetics)。楼慧强课题组揭示了酿酒酵母中DNA复制胁迫可以在2分钟内激活Snf1/AMPK激酶,AMPK磷酸化转录抑制因子Mig1,使后者离开六磷酸葡萄糖脱氢酶基因ZWF1/G6PD的启动子,诱导G6PD表达使葡萄糖代谢通路从糖酵解转向磷酸戊糖途径PPP,增加胞内NADPH的合成,促进单链DNA结合蛋白RPA的招募,从而激活DNA复制检验点;AMPK在碳饥饿响应中的经典功能外,还能快速应对DNA复制胁迫维持基因组稳定性 (Li et al., 2022, EMBO Journal)。
合成生物学领域:田杰生课题组以趋磁细菌磁小体为基础,合成出了由银纳米晶体与四氧化三铁纳米晶体组合而成的一种新型双球形复合纳米材料 (Xu et al., 2022a, Journal of Nanobiotechnology);以磁小体为基础, 通过遗传工程和化学处理, 构建出一种新型的药物递送载体, 其蛋白冠成分发生了改变, 大大降低了蛋白冠对靶向作用的影响 (Ma et al., 2022, International Journal of Nanomedicine);此外通过生物合成的手段, 将一种非蛋白的分子——生物素展示在磁小体表面,有利于磁小体的进一步功能化修饰 (Xu et al., 2022b, Bioengineering)。陈芝课题组揭示了C2H2锌指蛋白LipR作为阻遏蛋白, 通过直接调控PUFA合成酶, 脂肪酸合成酶及脂肪酸合成前体相关代谢基因的转录, 负调控DHA和饱和脂肪酸的合成 (Lyu et al., 2022, Applied and Environmental Microbiology);此外还揭示了锌响应调控因子Zur调控阿维链霉菌锌稳态, 次级代谢和形态分化的分子机制(Han et al., 2022, Applied and Environmental Microbiology)。袁红莉和杨金水课题组利用微生物发酵木薯渣和鱼副产物酸水解液生产ALA, 产量达到目前天然菌株的最高水平, 并通过基因工程改造进一步提高了ALA的产量 (Luo et al., 2022, Microbial Biotechnology);该团队还揭示了Ca2+参与了高温胁迫下微藻三酰甘油的积累 (Yang et al., 2022, Environmental Research), 以及高低温胁迫下微藻的抗氧化机制 (Xing et al., 2022, Environmental Research)。
代表性论文:
1. Ding, Z.H., Gao, Q., Tong, X., Xu, W.Y., Ma, L., Zhang, Z.J., Wang, Y., and Wang, X.B. (2022). MAPKs trigger antiviral immunity by directly phosphorylating a rhabdovirus nucleoprotein in plants and insect vectors. Plant Cell 34, 3110–3127.
2. Fang, X.D., Gao, Q., Zang, Y., Qiao, J.H., Gao, D.M., Xu, W.Y., Wang, Y., Li, D., and Wang, X.B. (2022). Host casein kinase 1-mediated phosphorylation modulates phase separation of a rhabdovirus phosphoprotein and virus infection. eLife 11, e74884.
3. Feng, X.Y., Tian, Y., Cui, W.J., Li, Y.Z., Wang, D., Liu, Y., Jiao, J., Chen, W.X., and Tian, C.F. (2022). The PTS(Ntr)-KdpDE-KdpFABC pathway contributes to low potassium stress adaptation and competitive nodulation of Sinorhizobium fredii. mBio 13, e0372121.
4. Gao, D.-M., Zhang, Z.-J., Qiao, J.-H., Gao, Q., Zang, Y., Xu, W.-Y., Xie, L., Fang, X.-D., Ding, Z.-H., and Yang, Y.-Z, Wang, Y., and Wang, X.B. (2022a). A rhabdovirus accessory protein inhibits jasmonic acid signaling in plants to attract insect vectors. Plant Physiology, kiac319. doi: 310.1093/plphys/kiac1319.
5. Gao, Z., Zhang, D., Wang, X., Zhang, X., Wen, Z., Zhang, Q., Li, D., Dinesh-Kumar, S.P., and Zhang, Y. (2022b). Coat proteins of necroviruses target 14-3-3a to subvert MAPKKKalpha-mediated antiviral immunity in plants. Nat Commun 13, 716.
6. Han, X., Liu, Y., and Chen, Z. (2022). Zinc finger protein LipR represses docosahexaenoic acid and lipid biosynthesis in Schizochytrium sp. Appl Environ Microbiol 88, e0206321.
7. He, L., Duan, Z., Yu, M., Qi, S., Wang, Y., Lou, H., and He, Q. (2022). HDA-2-containing complex is required for activation of catalase-3 expression in Neurospora crassa. mBio, e0135122.
8. Jiang, Z.H., Jin, X.J., Yang, M., Pi, Q.L., Cao, Q., Li, Z.G., Zhang, Y.L., Wang, X.B., Han, C.G., Yu, J.L., et al. (2022). Barley stripe mosaic virus γb protein targets thioredoxin h-type 1 to dampen salicylic acid-mediated defenses. Plant Physiology 189, 1715-1727.
9. Jiao, J., Zhang, B.L., Li, M.L., Zhang, Z.D., and Tian, C.F. (2022). The zinc-finger bearing xenogeneic silencer MucR in alpha-proteobacteria balances adaptation and regulatory integrity. ISME J 16, 738-749.
10. Li L., Wang J., Yang Z., Zhao Y., Jiang H., Jiang L., Hou W., Ye R., He Q., Kupiec M., Luke B., Cao Q., Qi Z., Li Z., Lou H.*. (2022). Metabolic remodeling maintains a reducing environment for rapid activation of the yeast DNA replication checkpoint. EMBO J 14;e108290.
11. Li, Z.L., Yang, X.X., Li, W.L., Wen, Z.Y., Duan, J.N., Jiang, Z.H., Zhang, D.L., Xie, X.L., Wang, X.T., Li, F.F., et al. (2022). SAMDC3 enhances resistance to Barley stripe mosaic virus by promoting the ubiquitination and proteasomal degradation of viral γb protein. New Phytol. 234, 618-633.
12. Liu, K.H., Zhang, B.L., Yang, B.S., Shi, W.T., Li, Y.F., Wang, Y., Zhang, P., Jiao, J., and Tian, C.F. (2022). Rhizobiales-specific RirA represses a naturally "synthetic" foreign siderophore gene cluster to maintain sinorhizobium-legume mutualism. mBio 13.
13. Luo, Y., Su, A., Yang, J., Yu, Q., Wang, E., and Yuan, H. (2022). Production of 5-aminolevulinic acid from hydrolysates of cassava residue and fish waste by engineered Bacillus cereus PT1. Microb Biotechnol.
14. Lyu, M., Cheng, Y., Dai, Y., Wen, Y., Song, Y., Li, J., and Chen, Z. (2022). Zinc-responsive regulator zur regulates zinc homeostasis, secondary metabolism, and morphological differentiation in Streptomyces avermitilis. Appl Environ Microbiol 88, e0027822.
15. Ma, S., Gu, C., Xu, J., He, J., Li, S., Zheng, H., Pang, B., Wen, Y., Fang, Q., Liu, W., et al. (2022). Strategy for avoiding protein corona inhibition of targeted drug delivery by linking recombinant affibody scaffold to magnetosomes. Int J Nanomedicine 17, 665-680.
16. Shi, W.T., Zhang, B.L., Li, M.L., Liu, K.H., Jiao, J., and Tian, C.F. (2022). The convergent xenogeneic silencer MucR predisposes alpha-proteobacteria to integrate AT-rich symbiosis genes. Nucleic Acids Res.
17. Xing, C., Li, J., Yuan, H., and Yang, J. (2022). Physiological and transcription level responses of microalgae Auxenochlorella protothecoides to cold and heat induced oxidative stress. Environ Res. 211, 113023.
18. Xu, J., Ma, S., Zhang, W., Jia, L., Zheng, H., Bo, P., Bai, X., Sun, H., Qi, L., Zhang, T., et al. (2022a). In vitro magnetosome remineralization for silver-magnetite hybrid magnetosome biosynthesis and used for healing of the infected wound. J Nanobiotechnology 20, 364.
19. Xu, J., Ma, S., Zheng, H., Pang, B., Li, S., Li, F., Feng, L., and Tian, J. (2022b). Biomanufacturing biotinylated magnetic nanomaterial via construction and fermentation of genetically engineered magnetotactic bacteria. Bioengineering 9, 356.
20. Yang, J., Li, W., Xing, C., Xing, G., Guo, Y., and Yuan, H. (2022). Ca(2+) participates in the regulation of microalgae triacylglycerol metabolism under heat stress. Environ Res. 208, 112696.
21. Yue, N., Jiang, Z.H., Zhang, X., Li, Z.G., Wang, X.T., Wen, Z.Y., Gao, Z.Y., Pi, Q.L., Zhang, Y.L., Wang, X.B., et al. (2022). Palmitoylation of γb protein directs a dynamic switch between Barley stripe mosaic virus replication and movement. The EMBO J. 41: : e110060.
22. Zhang, C., Tian, Y., Song, S., Zhang, L., Dang, Y., and He, Q. (2022). H3K56 deacetylation and H2A.Z deposition are required for aberrant heterochromatin spreading. Nucleic Acids Res. 50, 3852-3866.
23. Zhou, Y., Shen, S., Du, C., Wang, Y., Liu, Y., and He, Q. (2022). A role for the mitotic proteins Bub3 and BuGZ in transcriptional regulation of catalase-3 expression. PLoS Genet. 18, e1010254.