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SUMMARY

In prokaryotes, the toxin-antitoxin systems are
thought to play important roles in growth regulation
under stress conditions. In the E. coli MazE-MazF
system, MazF toxin functions as an mRNA interferase
cleaving mRNAs at ACA sequences to inhibit protein
synthesis leading to cell growth arrest. Myxococcus
xanthus is a bacterium displaying multicellular fruiting
body development during which approximately 80%
of cells undergo obligatory cell lysis. Here, we dem-
onstrate that M. xanthus has a solitary mazF gene
that lacks a cotranscribed antitoxin gene. The mazF
deletion results in elimination of the obligatory cell
death during development causing dramatic reduc-
tion in spore formation. Surprisingly, MrpC, a key de-
velopmental regulator, functions as a MazF antitoxin
and a mazF transcription activator. Transcription of
mrpC and mazF is negatively regulated via MrpC
phosphorylation by a Ser/Thr kinase cascade. These
findings reveal the regulated deployment of a toxin
gene for developmental programmed cell death in
bacteria.

INTRODUCTION

While programmed cell death (PCD) pathway is a well-estab-

lished eukaryotic developmental process, it is not clear if any de-

velopmental process in bacteria similarly require a well-defined

PCD pathway. Obligatory cell lysis observed during Bacillus

sporulation and Myxobacteria fruiting body formation exemplify

forms of bacterial PCD (Lewis, 2000; Gonzalez-Pastor et al.,

2003; Engelberg-Kulka and Hazan, 2003). Myxococcus xanthus,

a unique soil Gram-negative bacterium, exhibits social behavior

during vegetative growth and multicellular development forming

fruiting bodies upon nutrient starvation. The developmental

processes of M. xanthus have been shown to be regulated by

a series of sophisticated intercellular signaling pathways that

activate expression of a different set of genes with precise tem-

poral patterns during development (Dworkin, 1996; Julien et al.,

2000). During M. xanthus fruiting body formation, the majority

(approximately 80%) of the cells undergo altruistic obligatory
cell lysis, while the remaining 20% are converted to myxospores

(Wireman and Dworkin, 1977; Nariya and Inouye, 2003). Al-

though the exact autolysis mechanism remains obscure,

M. xanthus contains a large number of autolysin genes encoding

for enzymes that degrade the cell wall (TIGR: http://cmr.tigr.org/

tigr-scripts/CMR/GenomePage.cgi?org=gmx). Curiously, how-

ever, none of these autolysin genes have been shown to be

essential for developmental autolysis.

Toxin-antitoxin (TA) systems are widely found in bacterial

chromosomes and plasmids. These systems generally consist

of an operon that encodes a stable toxin and its cognate labile

antitoxin. They form a stable complex under normal growth con-

ditions, while under stress conditions the toxin is released from

the complex to exert its toxic function as a result of antitoxin deg-

radation. Genomic analysis of 126 prokaryotes revealed that

there are at least eleven genome-encoded TA systems (MazEF,

RelEB, DinJ/YafQ, YefM/YeoB, ParDE, HigBA, VapBC, Phd/

Doc, CcdAB, HipAB, and 3z) in free-living bacteria, while obligate

host-associated bacteria living in constant environmental condi-

tion do not posses the TA modules (Pandey and Gerdes, 2005;

Lioy et al., 2006). Based on these findings, it can be suggested

that TA systems may play important roles during adaptation to

environmental stresses. Among the TA systems, the MazE-

MazF system is one of the best-studied systems; MazF from

Escherichia coli has been shown to be an mRNA interferase spe-

cifically cleaving cellular mRNAs at ACA sequences to effectively

inhibit protein synthesis and subsequently cell growth (Zhang

et al., 2003). MazF induction in E. coli leads to a new physiolog-

ical cellular state termed ‘‘quasi-dormancy,’’ under which cells

are fully metabolically active and are still capable of producing

a protein in the complete absence of other cellular protein syn-

thesis if the mRNA for the protein is engineered to be devoid of

ACA sequences (Suzuki et al., 2005). Recently, Kolodkin-Gal

et al. (2007) reported that for the mazEmazF-mediated cell death

a pentapeptide is required, of which production is growth phase

dependent.

Here, we analyzed the TA systems in the M. xanthus genome

and found that it contains only a solitary mazF gene without

a cognate mazE-like antitoxin gene. This mazF gene (mazF-mx)

was found to be developmentally regulated and required for

the obligatory cell death during fruiting body formation, as its

deletion eliminated developmental cell death with a dramatic

reduction in spore formation. Surprisingly, we observed that

MrpC, an essential developmental transcription factor involved
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in the regulation of mazF-mx expression, functions as an anti-

toxin for MazF-mx by forming a stable complex with MazF-mx.

We further demonstrate that the expression of the MrpC-MazF

system is negatively regulated at the level of transcription via

MrpC phosphorylation by a eukaryotic-like Ser/Thr protein

kinase cascade (Pkn8(Pkn14 kinase)-Pkn14(MrpC kinase)) (Nar-

iya and Inouye, 2005a, 2006) under nutrient-rich growth condi-

tions. Under these conditions, MazF forms a stable complex

with a nonphosphorylated form of MrpC and the remaining free

MrpC is inactivated by phosphorylation, so that MrpC transcrip-

tion activator function is suppressed. We also show that MazF-

mx is an mRNA interferase, which recognizes a specific five-

base sequence, GUUGC in RNA, and cleaves between the two

U residues. These findings uncover that a PCD cascade is

involved in bacterial development, associating with a Ser/Thr

protein kinase cascade, and is reminiscent of eukaryotic PCD.

RESULTS

Presence of a Solitary mazF Gene
in the M. xanthus Genome
We found that in contrast to all known MazE-MazF systems in

a number of prokaryotes, M. xanthus MazF (MazF-mx) is en-

coded by a monocistronic operon without any cognate antitoxin

genes. Genomic analysis for the eleven known TA families using

TBLASTN-Search, Pfam, and COG lists on the M. xanthus geno-

mic database (TIGR) revealed the existence of a single MazF

homolog (MazF-mx; MAXN1659) with no identifiable MazE

homolog (Figure 1A). MazF-mx (122 aa) has 24% identity and

58% similarity to E. coli MazF (111 aa) (Figure 1B). The finding

of such a solitary mazF gene appeared to be an exception to

the hypothesis that the TA modules may play essential roles in

bacterial cell growth during adaptation to environmental

stresses by inducing a state of reversible bacteriostasis (Pandey

and Gerdes, 2005). It also raises intriguing questions as to

whether MazF-mx expression may be developmentally regu-

lated and associated with developmental autolysis, and if there

is an antitoxin for MazF-mx, considering the highly diverse nature

of MazF antitoxins (Pandey and Gerdes, 2005).

MrpC, a Key Developmental Transcription Factor,
as a Potential Antitoxin for MazF-mx
In order to identify the antitoxin for MazF-mx, we carried out

a yeast two-hybrid screen using MazF-mx as a bait and an

M. xanthus genomic library (Nariya and Inouye, 2005b). From

32 positive interactions found to associate with MazF-mx, 15

were encoded by mazF-mx and 17 were encoded by mrpC, indi-

cating that MazF-mx forms an oligomer (dimer) and that MrpC

may be a likely candidate antitoxin for MazF-mx. Interestingly,

MrpC is a 248 residue protein that is a member of the CRP tran-

scription regulator family and is chromosomally located 4.44 Mbp

downstream of the mazF-mx gene. Importantly, the mrpC gene

is essential for M. xanthus development (Sun and Shi, 2001)

and is a key early-developmental transcription activator for

the gene for FruA, another essential developmental regulator

(Ueki and Inouye, 2003). Additionally, phosphorylation of MrpC

by a Ser/Thr protein kinase cascade is also involved in the regu-

lation of MrpC function (Nariya and Inouye, 2006). MrpC and
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MazF interaction can be further detected by pull-down assays

using purified N-terminal histidine-tagged MrpC and nontagged

MazF-mx expressed in the soluble fraction of E. coli cell extract

(Figure 2A). Furthermore, in vegetative DZF1 cells, chromo-

somally encoded MazF-mx was coimmunoprecipitated with

MrpC using anti-MrpC IgG (lanes 1 and 3 in Figure 2B), demon-

strating that MazF-mx forms a complex with MrpC in vivo.

MazF-mx Is Essential for Obligatory Cell Death
during Development
In order to elucidate the role of MazF in the life cycle of M. xan-

thus, a mazF-mx in-frame deletion strain (DmazF) was con-

structed. While vegetative growth of DmazF was normal, we

observed that development was profoundly affected. When the

concentrated vegetative cells at the mid-log phase (2 3

1010 cells/ml) of DmazF and the parental cells (DZF1) were

spotted (5 ml; 108 cells) onto limited-nutrient CF agar plate,

DZF1 developed normally within 48 hr forming compact fruiting

bodies (FB) consisting of myxospores, while development of

DmazF was delayed and compact FB were not formed resulting

in very poor spore yields (at only 8% of the yield of wild-type

spores; Figure 2C). Even after 72, 96, and 120 hr of development,

FB of DmazF cells appeared to be very loose and relatively trans-

lucent with poor spore yield (15%, 18%, and 18%, respectively)

compared to DZF1. Cell autolysis and viability during develop-

ment were also examined (Figure 2D); cell numbers for both

DmazF and DZF1 almost doubled cell numbers at 12 hr after

spotting on CF plates. After this time point, DZF1 cell numbers

dramatically decreased to 18% due to autolysis. At the 24 hr

time point, the surviving wild-type cells begin to be converted

to myxospores. In contrast, DmazF cell numbers only slightly

reduced to 77% and were maintained at that level even at

48 hr (Figure 2D). Interestingly, DZF1 cell viability was substan-

tially reduced (less than 1%) after 24 hr of development, while

over 30% of DmazF cells were able to form colonies on CYE

plates (Figure 2E). When development-defective DmrpC cells

(Nariya and Inouye, 2006) were examined in a similar manner,

they were found to be completely incapable of growth on CF

plates (Figure 2D), while cell viability only gradually decreased

in contrast to DZF1 and DmazF cells. The DmrpC cell could not

form FB (Figure 2B), and the DmrpC cell viability continued to de-

crease (Figure 2E). A LIVE/DEAD stain technique (Invitrogen) was

also applied to detect cell death during M. xanthus development.

At 18 hr of development, approximately 63% of DZF1 cells lysed,

which cannot be detected by the staining, but the remaining 37%

of the cells were stainable, among which 54.3% were stained as

dead cells (Figure 2F). On the other hand, only 9.2% of stainable

DmazF cells were found dead (Figure 2F). These observations

indicate that MazF-mx is required for developmental autolysis

to achieve effective fruiting body formation and sporulation.

Developmental Regulation of mazF-mx Expression
by MrpC
Since the expression of the mazEF operon in E. coli is nega-

tively autoregulated by the MazE-MazF complex (Marianovsky

et al., 2001), we next examined the role of MrpC in regulating

mazF-mx expression. By primer extension (Figure 3A) using

total RNAs isolated from DZF1, the transcriptional initiation



Figure 1. Location of the mazF-mx Gene on the M. xanthus Chromosome and Sequence Alignment of MazF Homologs

(A) Location of mazF-mx (MAXN1659; 1962661::1963026) on the M. xanthus chromosome was obtained from TIGR. ORF with unknown (Unk) or known function is

shown with gray or black arrows; TetR family transcriptional regulator, WD40 repeats containing protein, ECF-sigma factor, and multidrug efflux transporter are

also shown.

(B) Alignment of M. xanthus MazF (Mx-MazF) with those of B. subtilis 168 (Bs), C. perfringens 13 (Cp), S. aureus COL (Sa), Nostoc PCC7120 (No), Synechocystis

PCC6803 (Sy), M. tuberculosis H37Rv (Mt1 �7) (Zhu et al., 2006), and E. coli K12 (Ec). b strand (S) and helical (H) regions are assigned according to Ec-MazF

(Kamada et al., 2003). Amino acid residues identical are shown by black shades, and conservative substitutions by gray shades. Plasmid-borne MazF is indicated

with an asterisk.

(C) DNA sequence of the mazF-mx promoter region. The transcription initiation site is indicated by +1. Putative MrpC binding sites, MazF1, and MazF2 are shown

by bold letters. The sequences corresponding to primers used for PCR and the primer extension are underlined with arrows.
site of mazF-mx was localized 164 bases upstream from the

initiation codon (Figure 1C) for both vegetative growth and

the development phases. Notably, the level of mazF-mx tran-

script significantly increased upon nutritional starvation

(Figure 3A), indicating that mazF-mx is developmentally in-

duced. To further confirm this notion, a lacZ-mazF-mx fusion

was constructed and introduced into DZF1 at the original chro-
mosomal location. b-galactosidase assay of this constructed

strain (mazF-mxP-lacZ/DZF1) showed that mazF-mx-lacZ was

expressed at approximately 20�30 U during vegetative growth

and steadily increased after 6 hr at the onset of development

and reached 55 U at 24 hr (Figure 3B). These results are in

agreement with the results of primer-extension analysis (Fig-

ures 3A and 3E).
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Figure 2. Roles of MazF-mx and MrpC in M. xanthus Development

(A) Interaction between MazF-mx and MrpC in a pull-down assay. Soluble fraction (S) from E. coli cells expressing nontagged MazF-mx was incubated with (+) or

without (�) purified His-tagged MrpC. The complex was recovered by the nickel-resin. The positions of His-tagged MrpC and MazF-mx are shown by arrows.

(B) Interaction between MazF-mx and MrpC in vivo. MrpC was immunoprecipitated using anti-MrpC IgG from the soluble fraction prepared from DZF1 (lanes 1

and 3) and Dpkn14 (lanes 2 and 4) cells at the mid-log phase. Immunoprecipitates were then analyzed by western blot using mouse anti-MazF-mx serum (left

panel) and anti-MrpC IgG (right panel).

(C) Developmental phenotypes on CF agar plates 12, 24, 36, and 48 hr after development. Spore yields at 36 and 48 hr are shown by considering the yield of the

wild-type DZF1 spores at 48 hr as 100%. Pkn14 and Pkn14KN represent pKSAT-Pkn14/DZF1 and pKSAT-Pkn14KN/DZF1, respectively.

(D and E) Developmental analysis of the total cell numbers and colony forming units (CFU). Numbers of rod-shape cells (solid line) and CFU (dotted line) of DmazF

(open circles), DZF1 (closed circles), and DmrpC (open squares) were measured in (D). The ratios of CFU to cell number were plotted in (E).
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Figure 3. Expression and Regulation of the

mazF-mx Gene during the M. xanthus Life

Cycle

(A) Primer-extension analysis of the mazF-mx

expression during development.

(B) b-galactosidase assay of mazF-mx promoter

lacZ fusion integrated into the chromosome.

(C) Gel-shift assay of MrpC on the mazF-mx pro-

moter. Arrows indicate the bands newly formed

in the presence of MrpC.

(D) Gel-shift assay of MrpC preincubated with

purified His-tagged MazF-mx (H-MazF) prior to

gel-shift assay.

(E) Primer-extension analysis for mazF-mx expres-

sion was carried out using total RNA from DZF1

and DmrpC cells at 0, 12, and 24 hr in development

(upper panel) and from the mid-log (ML) phase

cells and 12 hr development cells of DZF1 and

Dpkn14 (lower panel).
Next, we examined whether MrpC can bind to the mazF-mx

promoter. Gel-shift assay using purified MrpC and the mazF-

mx promoter region from �73 to +166 (PmazF; Figure 3C)

showed that MrpC binds to at least two sites on the mazF-mx

promoter region. On the basis of the consensus sequence:

A/GTTTC/GAA/G and GTGTC-N8-GACAC (N is any base; Nariya

and Inouye, 2006), two MrpC-binding sites may be assigned at

the regions from �56 to �50 (MazF1) and from �29 to �12

(MazF2; Figure 1C). Binding of MrpC to the promoter region

was found to be inhibited when MrpC was preincubated with

MazF-mx (Figure 3D). Furthermore, the mazF-mx expression in

DmrpC, analyzed by primer extension (Figure 3E), became unde-

tectable during both vegetative growth and the development

phase, indicating that MrpC is a transcription activator for devel-

opmental mazF-mx expression.

MazF-mx Toxicity in M. xanthus

In order to detect MazF-mx toxicity in M. xanthus, mazF-mx was

cloned in an M. xanthus expression vector, pKSAT, which can

constitutively express a cloned gene during vegetative growth

and the development phase. The resulting pKSAT-MazF-mx

was then integrated into the chromosome by site-specific (attB/

attP) recombination. Furthermore, a hemagglutinin epitope (HA)-

tagged mazF-mx was also constructed and cloned in pKSAT

(pKSAT-HA-MazF) to detect its expression in M. xanthus by west-

ern blot analysis. These constructs were first introduced into

DmazF, resulting in the strains pKSAT/DmazF (vector control),

pKSAT-MazF/DmazF, and pKSAT-HA-MazF/DmazF. No signifi-

cant growth defect was observed in any of the strains during veg-

etative growth (Figure 4A). Note that MrpC expression level in
DmazF was similar to that in DZF1 during both vegetative growth

and development (not shown). The formation of the MrpC-MazF

(HA-tagged) complex in pKSAT-HA-MazF/DmazF cells was de-

tected by immunoprecipitation using anti-MrpC IgG in vivo (not

shown). Importantly, the defective developmental phenotypes of

DmazF were partially restored by the introduction of pKSAT-

MazF, which could form compact FBs and yield myxospores at

an intermediate level (Figure 4B), while the introduction of pKSAT

vector alone was unable to restore the phenotypes. Notably, se-

vere cell toxicity by MazF-mx was observed in DmrpC. While

pKSAT-HA-MazF/DmrpC was able to grow in CYE medium, its

growth-rate was significantly reduced and the cells could not

reach to the maximum density (350 Klett) as the growth stopped

at 220 Klett density (Figure 4A). Interestingly, the cells then rapidly

lysed forming aggregates (to 50 Klett), while the density of control

cells only gradually decreased without forming aggregates (to 220

Klett) at 72 hr. A very similar phenotype was observed with

pKSAT-MazF/DmrpC. In this strain, significantly higher popula-

tions of the cells were found dead by the LIVE/DEAD stain

(Figure 4C). Constitutive expression of HA-tagged MazF-mx in

M. xanthus was confirmed by the western blot analysis using an

HA antibody at the mid-log and mid-stationary phases (not

shown). These results indicate that MazF-mx expression in the ab-

sence of MrpC expression is toxic, confirming the prediction that

MrpC functions as an antitoxin to MazF-mx.

MazF-mx Is an mRNA Interferase and MrpC
Is an Antitoxin for MazF-mx
Since MazF-mx expression did not exhibit strong cellular toxicity

in E. coli (not shown), we speculated that MazF-mx may cleave
(F) LIVE/DEAD staining of developmental cells. 108 vegetative cells at the mid-log phase (ML) and developmental (12 and 18 hr) cells initiated using 108 vegetative

cells were subjected to LIVE/DEAD stain. Stained cells were observed using a fluorescence microscopy. Twelve frame of pictures for each sample were taken to

count live (green) and dead (red) cells.
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Figure 4. Growth Curves and Morphology of DmazF and DmrpC

Strains

(A) Cell toxicity of MazF-mx expression during vegetative growth in DmazF and

DmrpC. The cells from the deletion strains were transformed with either pKSAT-

MazF-mx or pKSAT (control) and their growth curves are shown: pKSAT (filled

circles) or pKSAT-HA-MazF-mx (open circles) in DmazF (solid lines) and pKSAT

(filled squares) and pKSAT-HA-MazF-mx (open squares) in DmrpC (dotted lines).

(B) Development morphology of DZF1 (wild-type), DmazF, and DmrpC cells

carrying pKSAT-HA-MazF-mx on CF agar plates and spore yields at 48 hr in de-

velopment. The spore yield is expressed as percentage of that for DZF1.

(C) LIVE/DEAD staining of pKSAT-HA-MazF/DmazF and pKSAT-HA-MazF/

DmrpC cells. 108 vegetative cells at 24 and 48 hr in (A) were subjected to

LIVE/DEAD staining.
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mRNAs at more specific sites as compared to E. coli MazF.

Purified MazF-mx did show endoribonuclease activity against

M. xanthus total RNAs yielding free 50-OH group (Figure 5A).

When MS2 phage ssRNA (3569 bases) was used as substrate,

it was cleaved into two major bands of approximately 2.8 and

0.8 kb with many minor bands between them (Figure 5B), sug-

gesting that MS2 ssRNA may contain a preferential cleavage

site for MazF-mx. Importantly, preincubation of MazF-mx with

MrpC almost completely inhibited the MazF-mx endoribonu-

clease activity (Figure 5C), further demonstrating that MrpC

functions as an antitoxin for MazF-mx.

Next, to determine which of the two major fragments contains

the 50-end of MS2 ssRNA, the RNA labeled with [g-32P]ATP using

T4 polynucleotide kinase was incubated with MazF-mx and the

0.8 kb band was found to be derived from the 50-end (not shown).

Thus, we designed four primers at positions 1337, 1078, 0660,

and 0252 from the 50 end of MS2 ssRNA to identify the cleavage

site. As shown in Figure 5D, the amount of the full-extended

products decreased with primers 1337 and 1078 as the amount

of MazF-mx was increased in the reaction, whereas no signifi-

cant change was observed with primers 0660 and 0252, indicat-

ing that the preferential cleavage site exists between positions

0660 and 1078. Subsequently, the primer-extension analysis

by primer 1337 was carried out with different amounts of

MazF-mx to identify the exact cleave site (Figure 5E). At a

low concentration of MazF-mx (0.1 mg; lane 2), a preferential

cleavage was observed at the 30 end of the U-0724 residue

(GAGU!UGCA; ! indicates the cleavage site), which yields a 0.8 kb

fragment. Preincubation of MazF-mx (0.1 mg) with MrpC

(0.5 mg) resulted in complete inhibition of the cleavage (lane 5).

When higher concentrations of MazF-mx (lanes 3 and 4) were

used, new cleavage sites appeared at 1087 (AUGU!CAGG),

1106 (ACGU!AAUA), and 1241 (ACGU!AAAG) with several other

minor cleavage sites that were detected after prolonged autora-

diography of the gel (Table 1). A secondary structure of MS2

ssRNA predicted by MFOLD program (Zuker, 1989; http://

bioweb.pasteur.fr/seqanal/interfaces/mfold-simple.html) is

shown in Figure 5F in which major cleavage sites are indicated

by arrows. Interestingly, all cleavage sites are located on sin-

gle-stranded regions, consistent with the previous finding that

E. coli MazF cleaves only single-stranded RNAs (Zhang et al.,

2003). From the alignment of all cleavage sites (Table 1), the

most preferred cleavage sequence for MazF-mx is GU!UGC, in

which the first G residue may be replaced with A residue.

Since MazF endoribonuclease activity has been shown to be

inhibited by a moderate salt concentration and does not require

metal ions (Pellegrini et al., 2005), we examined the effect of NaCl

and MgCl2 on MazF-mx endoribonuclease activity using a

synthetic 14 nt oligoribonucleotide, MS2-0724 (UUGGAGU!UG

CAGUU). When 50-end g-32P-labeled MS2-0724 (0.01 pmole)

was incubated with MazF-mx (50 ng) for 30 min at 30�C in

20 ml of MazF buffer without NaCl, the substrate was completely

cleaved; however the cleavage reaction was found to be very

sensitive to NaCl and MgCl2 at higher than 100 and 25 mM,

respectively (not shown). This salt sensitivity of MazF-mx was

found to be quite useful for purification of MazF-mx because a

very high expression of MazF-mx in E. coli can be achieved in

LB medium with high salt concentrations without coexpressing

http://bioweb.pasteur.fr/seqanal/interfaces/mfold-simple.html
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its antitoxin, as even low MazF-mx expression was lethal in the

absence of salt (not shown). Interestingly, a severe developmen-

tal defect has been observed on CF plates containing NaCl

at 100�150 mM (Kimura et al., 2002), which may be at least

partially due to the salt sensitivity of MazF-mx.

A Protein Kinase Cascade Negatively Regulates
the MrpC-MazF System
During vegetative growth, MrpC is reported to be phosphory-

lated by a eukaryotic-like Ser/Thr protein kinase cascade that

suppresses MrpC function to prevent untimely switch-on of the

early developmental pathway (Pkn8(Pkn14 kinase)-Pkn14(MrpC

kinase) cascade) (Nariya and Inouye, 2006). The genetic disrup-

tion of the Pkn8-Pkn14 cascade causes upregulation of mrpC

Figure 5. Endoribonuclease Activity of

MazF-mx In Vitro

(A) Cleavage of M. xanthus total RNA by His-tag-

ged(H)-MazF. The products were 50-end labeled

with [g-32P]ATP by T4 kinase and separated on

agarose gel. The gel was stained with ethidium

bromide (EtBr) (left panel). Subsequently the gel

was dried and then subjected to autoradiography

(right panel).

(B and C) Cleavage of MS2 ssRNA and its inhibi-

tion by MrpC. The gel was stained with EtBr.

(D) Primer-extension analysis of MS2 ssRNA

digested with MazF-mx. Fully extended (50-end)

products were shown (see also E). After MS2

ssRNA (0.8 mg) was incubated with 0 (lane 1), 0.1

(lane 2), 0.5 (lane 3), and 1.0 mg (lane 4) of H-

MazF in 20 ml of MazF buffer, 5 ml of sample was

heated at 95�C for 1 min with 1 pmole (1 ml) of

the 50-end-labeled primer and then placed on ice

for 5 min. RT reaction was carried out at 47�C for

30 min as described in Experimental Procedures.

The number for each primer indicates the position

of the 50-end residue in MS2 ssRNA.

(E) Primer-extension analysis (D) used the 1337

primer and the cleavage sites by MazF-mx. Lane

5 is preincubated 0.1 mg of H-MazF (lane 1) with

0.5 mg of antitoxin, MrpC. The number indicates

the position in MS2 ssRNA cleaved by H-MazF-mx.

(F) Predicted secondary structure of MS2 ssRNA by

the MFOLD program (Zuker, 1989) and the corre-

sponding cleavage sites by H-MazF in (E).

resulting in acceleration of FB formation

but with less spore yield (Nariya and In-

ouye, 2005a). We, therefore, examined

the effect of MrpC phosphorylation on

the MrpC-MazF system. In the pkn14 mu-

tant (Dpkn14), the mazF-mx expression

was also shown to be upregulated as in

the case of mrpC expression during

both vegetative growth and development

(Figure 3E), and as expected a higher ac-

cumulation of the MrpC-MazF complex

was detected (Figure 2B). Furthermore,

it has been shown that the Pkn8-Pkn14

cascade is functioning mainly during vegetative growth (Nariya

and Inouye, 2005a). As shown in Figure 2C, constitutive ex-

pression of Pkn14 in DZF1 using pKSAT resulted in delayed de-

velopment, while expression of Pkn14KN, which is unable to

phosphorylate MrpC, in DZF1 caused faster development as

previously shown with Dpkn14 (Nariya and Inouye, 2005a) (see

Figure 2C), probably because Pkn14KN forms inactive heterote-

tramers with wild-type Pkn14 produced in DZF1.

Furthermore, we also examined the effect of phosphorylation

of MrpC on its ability to form the complex with MazF. For this

purpose, we tested how the pretreatment of MrpC with Pkn14

affects the mRNA interferase activity of MazF-mx using MS2-

0724 RNA as substrate (Figures 6A and 6B). When 50 ng of

MazF-mx was preincubated with 200 ng of MrpC (a ratio of
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MrpC to MazF-mx of 1.6), MazF-mx-mediated cleavage of MS2-

0724 was completely inhibited (Figure 6A and also compare lane

1 with lane 2 of Figure 6B). However, when MrpC was incubated

with Pkn14 in the presence of 1 mM ATP, the inhibitory function

of MrpC decreased (lane 4, Figure 6B), while the addition of

Pkn14K48N had no effect on the MrpC activity (lane 3). Pkn14

by itself did not show any RNase activity (lane 5). Next we exam-

ined if MrpC in the complex with MazF-mx can be phopsphory-

lated by Pkn14. As shown in Figure 6C, free MrpC was effectively

phosphorylated by Pkn14; however once MrpC formed the com-

plex with MazF-mx, MrpC phosphorylation was significantly

reduced. Together, these results support the notion that during

vegetative growth, expression of the MrpC-MazF system is neg-

atively regulated by the Pkn8-Pkn14 kinase cascade; MazF-mx

Table 1. Cleavage Sites of MS2 ssRNA

Positiona Strengthb Cleavagec Structured

0724 +++ GAGU!UGCA ss

0551 +/� GUGU!UGCU pd

0802 +/� GAGU!UUCU pd

0952 +/� UGGU!UGUC pd

0488 � ACGU UGCG ds

2175 NT AAGU UGCA ds

0602 +/� CCAU!UGCG pd

1106 + ACGU!AAUA ss

1241 + ACGU!AAAG ss

0449 � CTGU AAGC ds

0534 � AGGU AAUU ds

0639 � GCGU AAUU ds

1042 � AGGU AACA ds

1127 +/� UCAU!AAGC ss

1109 +/� UAAU!AACG pd

0213 +/� AGAU!AACU ss

0929 � ACAU AAAC ds

1087 + AUGU!CAGG pd

0367 +/� GGGU!CAUG pd

0329 � AAGU CACA ds

0524 � AAGU CACC ds

0825 � ACGU CAGG ds

1124 +/� CCAU!CAUA ss

1289 +/� UAAU!CAGG ss

0342 � AGAU CAAG ds

0694 � CGAU CAAG ds

0842 � ACAU CAAG ss

Consensus GU!

A
a Position of U cleaved by MazF-mx at 30-end in MS2 ssRNA.
b Strength of cleavage observed by the primer-extension analyses. NT,

not tested.
c Cleavage site is indicated by ! and bold letter represents the residue

sharing among cleavage sites.
d Predicted secondary structure in cleavage site; ss: single-stranded, ds:

double-stranded, and pd: partially double-stranded.
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has much higher affinity with the nonphosphorylated form of

MrpC than with the phosphorylated form of MrpC so that

nonphosphorylated MrpC is maintained at a very low level in

the vegetative cells, which in turn suppresses the transcription

of both mrpC anf MazF genes.

Figure 6. Effect of MrpC Phosphorylation by Pkn14 on Its Antitoxin

Function for MazF-mx

0.01 pmole of MS2-0724 was incubated with H-MazF for 30 min at 30�C in

20 ml of MazF buffer. Reaction was stopped by addition of 12 ml sequencing

loading buffer and heated at 95�C for 2 min and then placed on ice. The prod-

ucts were separated by 20% PAGE and subjected to autoradiography. MS2-

0724 and the 50-end-labeled cleavage product (P) are indicated by arrows.

(A) 50 ng of H-MazF was preincubated with MrpC for 10 min in MazF buffer.

� indicates that no MazF was added.

(B) The effect of phosphorylation of MrpC by Pkn14 on its antitoxin function. H-

MazF was incubated with Pkn14 (14) and Pkn14K48N (KN) (Nariya and Inouye,

2006) in the presence of ATP. After dialysis, samples were examined for their

endoribonuclease activities.

(C) Phosphorylation of MrpC by Pkn14 in the MrpC-MazF complex. MrpC

(2 mg) was preincubated with 0 (lane 1), 250 (lane 2), 500 (lane 3), 750 (lane

4), and 1000 ng (lane 5) in 10 ml of MazF buffer for 10 min at 30�C. Then, it

was further incubated with Pkn14 (8 mg) in 20 ml of MazF buffer containing

10 mM MgCl2 and 1 mM ATP/10 mCi [g-32P]ATP for 30 min. The reaction mix-

tures were subjected to 12.5% SDS-PAGE. The gel was transferred onto

a PVDF membrane, followed by autoradiography and staining with CBB.



DISCUSSION

Together, our findings uncover that M. xanthus has a PCD cas-

cade that is developmentally regulated and composed of an

eukaryotic-like Ser/Thr protein kinase cascade (Pkn8-Pkn14),

a developmental transcription factor/antitoxin (MrpC), and an

mRNA interferase (MazF-mx). In this PCD cascade, the function

of PCD-causing MazF-mx as interferase is inhibited by forming

a complex with nonphosphorylated MrpC. The remaining free

MrpC is phosphorylated by Pkn14 so that MrpC cannot activate

transcription of the mrpC gene as well as the mazF gene. There-

fore, the expression of the MrpC-MazF system is negatively reg-

ulated by a protein kinase cascade during vegetative growth. It is

important to note that Pkn8 is essential for kinase activity for

MrpC as the deletion of pkn8 causes the same developmentally

defective phenotype as the deletion of pkn14.

It has been demonstrated that during vegetative growth, MrpC

is phosphorylated through the Pkn8-Pkn14 cascade, leading to

repression of the transcription activator function of MrpC (Nariya

and Inouye, 2006), as an activator for essential developmental

genes, mrpC and fruA. Upon the onset of FB formation, the

N-terminal 25 residue sequence of MrpC (where the phosphory-

lation site(s) is located) is processed presumably by LonD,

a developmentally induced ATP-dependent protease, to form

MrpC2, which in turn induces MrpC production as its function

is no more affected by the Pkn8-Pkn14 cascade (Nariya and In-

ouye, 2006). MrpC2 is also likely to activate the mazF-mx gene

expression, and subsequent cleavage of cellular mRNAs by

MazF-mx may cause further devastating metabolic effects to

the cells whose growth is already severely inhibited by nutrition

deprivation. This may trigger autolysis by inducing a number of

autolytic enzymes.

MrpC is a key regulator for activation of early developmental

genes including mazF-mx (present results). During early and

middle development, MrpC is expressed at a high level (Nariya

and Inouye, 2006) that is likely able to neutralize MazF-mx toxic-

ity, while it continues to upregulate the mazF-mx expression.

Before sporulation is initiated, MrpC is proposed to be degraded

by LonD and/or other unidentified cellular proteases (Nariya and

Inouye, 2006), which then activate MazF-mx mRNA interferase

function, resulting in developmental autolysis to provide nutri-

ents for a minor population (20%) of cells, which are destined

to form FB and subsequent myxospores. It should be noted

that the extent of cell lysis during the fruiting body formation

appears to be different from strain to strain of M. xanthus; and

also different are the medium conditions used during the fruiting

body formation, for example, little lysis was observed in the pres-

ence of E. coli cells as prey (Berleman and Kirby, 2007). It is

tempting to speculate that the extent of PCD of M. xanthus dur-

ing the fruiting body formation may be regulated by the availabil-

ity of nutrition in the medium and probably also inside the cells.

How the 20% population is selected to survive avoiding autol-

ysis remains an intriguing question. Since M. xanthus develop-

ment does not uniformly occur, the seemingly altruistic autolysis

may be a matter of timing, and the subpopulation in which the

onset of the developmental program is delayed (maybe because

of their position in the cell cycle at the time of nutritional depriva-

tion) may be retriggered by transient release of nutrition from
autolyzed cells to initiate the late developmental process. In

this selected population, MazF-mx function has to be subdued

by the mechanism yet to be determined. It is possible that the

expression level of MrpC in this subpopulation may be relatively

higher than that in the other lysing cells, effectively neutralizing

MazF-mx toxicity to result in successful development. It is inter-

esting to note that the pkn8-pkn14 cascade deletion strain ex-

presses a high level of MrpC even during vegetative growth,

and that FB development progresses significantly faster than

the parent strain (Nariya and Inouye, 2006) likely due to higher

expression of MazF-mx. It also remains to be elucidated if

MazF-mx can trigger PCD through the cleavage of a specific

mRNA(s) or rather does this by inflicting general damage to the

cells as suggested in the case of E. coli MazF (Engelberg-Kulka

et al., 2005). In this regard, it is also interesting to note that MazF

induction in mammalian cells induces BAK-dependent PCD

(Shimazu et al., 2007).

The prevailing TA systems in bacteria appear to have multiple

functions in bacterial physiology, although there are conflicting

views on the roles of the TA systems in PCD in E. coli; a recent

report demonstrated that MazF mediates cell death (Kolodkin-

Gal et al., 2007), while another group disputed that it does not

cause PCD (Tsilibaris et al., 2007). Our results demonstrate

that solitary MazF has a distinct mission from those toxins en-

coded by an operon together with their cognate antitoxin, as it

functions only for PCD (rather than cell growth arrest) in a sophis-

ticated PCD cascade associating with Ser/Thr protein kinases,

which is reminiscent of the eukaryotic PCD cascade.

EXPERIMENTAL PROCEDURES

Bacteria, Growth Conditions, Plasmid, and DNA Manipulation

M. xanthus FB (DZF1) (Morrison and Zusman, 1979) and its derivatives were

cultured in CYE medium at 30�C (Campos et al., 1978) supplemented with

80 mg/ml kanamycin or 250 mg/ml streptomycin when necessary. To initiate

fruiting body development, M. xanthus cells were spotted on CF (Hagen

et al., 1978) and TM agar (Nariya and Inouye, 2003) plates and spore yields

were measured as described previously (Inouye et al., 1979). Autolysis during

development was measured by counting cell numbers (Nariya and Inouye,

2003). Cell viability was examined by measuring colony formation units (CFU)

by plating cells on CYE plates. E. coli DH5a (Hanahan, 1983) was used as the

recipient strain for transformation and grown in LB medium (Miller, 1972) sup-

plemented with 50 mg/ml kanamycin, 100 mg/ml ampicillin, or 25 mg/ml strepto-

mycin. E. coli BL21 (DE3) was used for the expression of mazF-mx under the

control of a T7 promoter in a T7 vector (Studier et al., 1990). The proteins

were induced by the addition of 1 mM IPTG at 100 Klett (equivalent to 5 3

108 cells/ml) in M9 medium (Maniatis et al., 1989) supplemented with 100 mg/ml

ampicillin. pUC19 (Yanisch-Perron et al., 1985) was used to clone chromo-

somal DNA fragments. DNA sequences were determined by an ABI Genetic An-

alyzer 310 using the methods provided by the company and double-stranded

plasmid DNA as templates. M. xanthus genomic DNA was used as template

for PCR amplification. PCR-amplified regions were confirmed by DNA se-

quencing. Other DNA manipulations were carried out by the methods de-

scribed previously (Munoz-Dorado et al., 1991).

Construction of a mazF-mx In-Frame Deletion Strain, DmazF,

and a mazF-mx-lacZ Fusion Strain

A method developed based on the cell toxicity by galK (galactokinase gene)

(Ueki et al., 1996) was used for construction of an in-frame deletion of

MazF-mx between Pro24 and Ser100. Since the genomic database for M. xan-

thus (http://cmr.tigr.org/tigr-scripts/CMR/GenomePage.cgi?org=gmx) shows

that M. xanthus does not contain galK and galT (galactose-1-phosphate
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http://cmr.tigr.org/tigr-scripts/CMR/GenomePage.cgi?org&equals;gmx


uridylyltransferase gene), D-(+)-galactose can be used in this system in place

of 2-deoxygalactose. Two PCR fragments (MazF-N, 577 bp and MazF-C,

566 bp) were amplified using the M. xanthus chromosomal DNA as template

by the following primers: one fragment with MazF-N5 (AAAGAATTCAAGC

TTCGAACCAGCGCAGGCGGTTGTAGAGGCAT) and MazF-N3 (AAAGGATC

CAAAGTCGACCGGGCCTCGTGAGTCGTCGGGCTCCA), and the other frag-

ment with MazF-C5 (AAAGAATTCAAGCTTGTCGACGCGCGGGTGGAACA

GATTCTTGCC) and MazF-C3 (AAAGGATCCTCAAGACGAGCCCGCCAGC

GAAGAGCACT). These fragments were cloned into pKO1KmR (Ueki et al.,

1996) at EcoRI and BamHI sites resulting in plasmids, pMazF-N and pMazF-

C, respectively. The SalI-BamHI fragment from pC-MazF was inserted into

pMazF-N at SalI-BamHI, resulting in pMazF-IF, which has an in-frame fusion

between Val23 (GTC) and Asp101 (GAC). pMazF-IF was electroporated into

DZF1 cells for single crossing-over recombination (1st recombination) to

screen kanamycin-resistant cells on CYE plates containing 80 mg/ml kanamy-

cin. Kanamycin-resistant colonies were then subjected to colony-directed

PCR to determine the sites of integration, using the following primers: for up-

stream integration (N-cross), MazF-5 (GTGGGCGCGAAGTGCGCAGCCGTG

TCT) and Km-1 (CTGGCTTTCTACGTGTTCCGCTTCCTTTAGC) in pKO1KmR,

and for downstream integration (C-cross), MazF-5 and MazF-IC (TCGTCG

TCGTGTCGCAGGTGTCCTCGGT). N- and C-cross strains identified above

were individually cultured in CYE medium to 100 Klett, and then serially diluted

cultures with CYE medium were plated on CYE agar plates containing 10 mg/ml

D-(+)-galactose (Sigma). Kanamycin-sensitive and galactose-resistant colo-

nies that resulted from the second recombination looping out the plasmid-

derived region were from either the original wild-type, DZF1, or in-frame

deletion strains (DmazF). The DmazF mutation was identified by colony-

directed PCR using two sets of primers: one with MazF-5 and MazF-I (GAGT

GATTGAAGACGTCGTCCTGAACCACCA) and the other with MazF-5 and

MazF-C3. Since the phenotype during vegetative growth and development

of both DmazF strains obtained from both N- and C-cross was identical,

they were used as DmazF.

The lacZ-fusion strain with the mazF-mx promoter region was constructed

by insetting MazF-N fragment (�344 to +233) digested with HindIII and BamHI

into pZK (Nariya and Inouye, 2005b), resulting in pZK-mazFp. b-galactosidase

assays were carried out as described previously (Kroos et al., 1986; Nariya and

Inouye, 2005b).

LIVE/DEAD Staining

5 3 108 cells (vegetative cells and developmental cells spotted on CF plate)

washed twice with TM buffer were stained using the LIVE/DEAD BacLight Bac-

terial Viability Kit (Invitrogen; L7012) according to the manufacturer’s protocol.

Stained cells were concentrated to 109 cells/ml in TM buffer and the pictures

were taken using a fluorescence microscope (OLYMPUS BX-FLA).

Primer-Extension Analysis

Total RNA was isolated by the hot-phenol method from DZF1, DmrpC, and

Dpkn14 cells grown in CYE medium harvested at the early-log (12 hr/50 Klett),

mid-log (16.5 hr/100 Klett), late-log (24 hr/200 Klett), early-stationary (36 hr/

350 Klett), mid-stationary (48 hr/350 Klett), and late-stationary (60 hr/280 Klett)

phases (Nariya and Inouye, 2005b). At the early-stationary phase, cells were

spotted on TM agar plates to initiate fruiting body development, and develop-

mental cells were collected at 0, 6, 12, and 24 hr as described previously

(Nariya and Inouye, 2005b). Primer extension was carried out using primer

MazF-AS as described previously (Nariya and Inouye, 2003). The extended

products were analyzed on a 6% polyacrylamide gel containing 8 M urea

with a sequencing ladder made with the same primer using pMazF-N as

template.

Construction of M. xanthus Expression Vector, pKSAT

Since the kanamycin resistance gene (kmr) from Tn5 is generally used as

a drug marker in M. xanthus and known to be constitutively expressed during

both vegetative growth and development, its promoter region (159 bp) was

amplified by PCR with primers Km-P5 (AAAGGTACCACAGCAAGCGAACCG

GAATTGCCA) and Km-P3 (AAACATATGAAACGATCCTCATCCTGTCTC) us-

ing pUC7Km(P-) as template (Norioka et al., 1995). The resulting DNA fragment

was cloned into pBluescript II SK(-) (Stratagene) between KpnI and NdeI sites,
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resulting in pKA. The 1.9 kbp NdeI-HincII fragment containing strA-strB genes

from Salmonella typhimurium plasmid R64 (Komano et al., 2000) was then

inserted between two SspI sites in pKA, resulting in pKS. For attB/attP recom-

bination in M. xanthus, the 2.9 kbp SmaI fragment containing intP-attP from

Myxophage Mx8 (Tojo et al., 1996) was inserted between two DraI sites, result-

ing in pKSAT. In this plasmid, the transcription directions of both strA-strB and

intP-attP were selected to be the same as that of the kmr promoter. pKSAT

contains NdeI and BamHI sites for cloning genes for expression.

Yeast Two-Hybrid Screen for Identification of the Antitoxin

for MazF-mx

The 0.4 kb NdeI-BamHI fragment from mazF-mx was amplified by PCR using

primers, MazF-N (AAACATATGCCCCCCGAGCGAATCAACCGCGGTGA)

and MazF-C (AAAGGATCCTCACGGCCTCGCGAAGAACGACACCTGCT),

and cloned into pGBD-NdeI for bait and pGAD-NdeI for target to perform

a yeast two-hybrid screen (Nariya and Inouye, 2005b). The yeast strain

PJ69-4A was used for the yeast two-hybrid screen (James et al., 1996) and

the M. xanthus genomic DNA library used is described previously (Nariya

and Inouye, 2005b). Interaction between MazF-mx and MrpC in the yeast

two-hybrid screen was examined by a quantitative b-galactosidase activity

assay (Nariya and Inouye, 2005b).

Expression and Purification of MazF-mx

The mazF-mx fragment was cloned into pET-11a and pET-16b(+) (Novagene)

resulting in pET-MazF or pET-H-MazF, respectively. Both nontagged MazF-

mx and N-terminal histidine-tagged MazF-mx (H-MazF) induced in E. coli

BL21 (DE3) by IPTG for 3 hr were soluble. H-MazF was purified using Ni-

NTA SUPER FLOW resin (QIAGEN) as described before (Nariya and Inouye,

2005a). The eluted fraction from the resin was then dialyzed against 50 mM

Tris-HCl, pH 8.0, containing 20% (w/v) glycerol, followed by passing through

HiTrap SP and Q columns (GE). H-MazF was recovered from the flow-through

pool by the resin. The eluted fraction was dialyzed against MazF buffer (25 mM

Tris-HCl, pH 8.0, containing 100 mM NaCl, 5%[w/v] glycerol, and 0.5 mM DTT],

and purified H-MazF (0.5 mg/ml) was stored at �80�C. Gel-filtration analysis

using purified H-MazF (200 ml) was performed as described previously (Nariya

and Inouye, 2005a). H-MazF (15.9 kD on SDS-PAGE) was eluted at the position

of �30 kD (dimer).

Interaction of MazF-mx with MrpC

A pull-down assay was carried out as previously described (Nariya and Inouye,

2005b). Five hundred microliters of crude soluble fraction (S) from E. coli

(2000 Klett/ml) expressing nontagged MazF-mx was incubated with (+) or

without (�) 25 mg of purified N-terminal histidine-tagged MrpC (Nariya and

Inouye, 2005a). The complex was recovered by 10 ml of the Ni-NTA resin.

The complex thus formed was analyzed by SDS-PAGE. Immunoprecipitation

was carried out using the soluble fraction (500 ml) from the mid-log phase cell

suspension (2000 Klett/ml MazF buffer with 5 mM EDTA and 23 concentration

of protease inhibitor cocktail [Roche]) and anti-MrpC rabbit IgG (50 ml), as

described previously (Nariya and Inouye, 2005a, 2006). Immumoprecipitates

were then dissolved in 50 ml of 13SAB containing 250 mM NaCl, and then

10 ml of samples were subjected onto a 15% SDS-PAGE, followed by western

blot analysis using anti-MrpC IgG and monoclonal anti-HA mouse IgG (Nariya

and Inouye, 2005b) or anti-MazF-mx mouse serum raised by purified H-MazF

(PRF&L).

Expression of MazF-mx in M. xanthus

Hemagglutinin epitope (HA)-tagged mazF-mx was amplified by PCR using

primers MazF-HA (AAACATATGGGGTACCCCTACGACGTGCCCGACTACG

CCATGCCCCCCGAGCGAATCAACCGCGGTGA) and MazF-C. The HA-tagged

and nontagged mazF-mx genes were then cloned into pKSAT at NdeI and

BamHI sites resulting in plasmids pKSAT-MazF and pKSAT-HA-MazF, respec-

tively. They were integrated into the chromosome of DmazF and DmrpC by

site-specific (attB/attP) recombination (Nariya and Inouye, 2003) resulting

in strains pKSAT-MazF/DmazF and pKSAT-HA-MazF/DmrpC, respectively.

pKSAT was also integrated into DmazF and DmrpC strains, resulting in strains

pKSAT/DmazF and pKSAT/DmrpC, respectively. pKSAT-Pkn14 and pKSAT–

Pkn14KN were also constructed using the corresponding NdeI and BamHI



fragments (Nariya and Inouye, 2006), which were then integrated into the

chromosome of DZF1.

Expression of MazF-mx in DmrpC (108 cells) carrying pKSAT-HA-MazF dur-

ing vegetative growth was detected by western blot using HA antibody (Nariya

and Inouye, 2005b).

Gel-Shift Assay

The promoter region of mazF-mx (PmazF: �73 to +166) was amplified by PCR

using primers MazF-N5 and MazF-N3. The product was purified by agarose

gel electrophoresis using the QIAquick Gel Extraction Kit (QIAGEN). Purified

PmazF was then labeled at the 50 end with [g-32P]ATP by T4 kinase (Invitrogen),

followed by further purification using the QIAquick PCR purification Kit (QIA-

GEN). The gel-shift assay was carried out using purified MrpC and labeled

PmazF (10 fmoles) as described previously (Nariya and Inouye, 2006). MrpC

was incubated with H-MazF in 5 ml of MazF buffer for 10 min at 30�C and sub-

jected to the gel-shift assay.

mRNA Interferase Activity of MazF-mx

M. xanthus total RNA isolated from mid-log cells was treated with 1 mM ATP

and T4 kinase on ice for 60 min to mask all the free 50-ends and purified on

a QIAGEN column using PB and PE buffers (QIAGEN). Purified RNA (0.1 mg)

was digested with H-MazF in 20 ml of MazF buffer for 30 min at 30�C. Products

were then labeled with [g-32P]ATP by T4 kinase. Denatured products in urea

were separated on 1.2% TBE native agarose gel (Liu and Chou, 1990). The

gel was stained with ethidium bromide (EtBr) and then dried with a gel drier.

The dried gel was subjected to autoradiography.

MS2 ssRNA (0.8 mg; 3569 bases; Roche) was digested by H-MazF in 20 ml

of MazF buffer at 30�C as indicated. H-MazF was preincubated with MrpC

for 10 min and then further incubated with MS2 ssRNA for 30 min. MrpC

(2.5 mg) was incubated with 10 mg of Pkn14 (14) or autokinase-defect mutant,

Pkn14K48N (KN) (Nariya and Inouye, 2006), in 50 ml of P buffer with 1 mM ATP

at 30�C for 4 hr, followed by dialysis against MazF buffer containing 200 mM

NaCl at 4�C. Four microliters (200 ng MrpC) of dialysates were preincubated

with H-MazF (50 ng) in 20 ml of MazF buffer for 10 min at 30�C. To this solution,

0.01 pmole of 50-end g-32P-labeled MS2-0724 (a 14 base synthetic RNA sub-

strate; see the text) was added and the mixture was incubated for 30 min at

30�C. For control, MS2-0724 was incubated with only Pkn14. Reactions were

stopped by addition of 12 ml of sequencing loading buffer (Stop Solution;

Roche) and heated at 95�C for 2 min and then placed on ice. The product was

separated by a 20% TBE-PAGE and the gel was subjected to autoradiography.
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