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SUMMARY

We recently proposed that competitive endogenous
RNAs (ceRNAs) sequester microRNAs to regulate
mRNA transcripts containing common microRNA
recognitionelements (MREs).However, the functional
role of ceRNAs in cancer remains unknown. Loss of
PTEN, a tumor suppressor regulated by ceRNA
activity, frequently occurs in melanoma. Here, we
report thediscovery of significant enrichment of puta-
tive PTEN ceRNAs among genes whose loss acceler-
ates tumorigenesis following Sleeping Beauty inser-
tional mutagenesis in a mouse model of melanoma.
We validated several putative PTEN ceRNAs and
further characterized one, the ZEB2 transcript. We
show that ZEB2 modulates PTEN protein levels in
amicroRNA-dependent, protein coding-independent
manner.AttenuationofZEB2expressionactivates the
PI3K/AKT pathway, enhances cell transformation,
and commonly occurs in human melanomas and
other cancers expressing low PTEN levels. Our study
genetically identifies multiple putative microRNA
decoys for PTEN, validates ZEB2 mRNA as a bona
fide PTEN ceRNA, and demonstrates that abrogated
ZEB2 expression cooperates with BRAFV600E to
promote melanomagenesis.

INTRODUCTION

Melanoma is estimated to affect more than 70,000 people in the

US in the year 2011 and, despite extensive research and clinical
382 Cell 147, 382–395, October 14, 2011 ª2011 Elsevier Inc.
efforts, remains fatal in the majority of patients with metastatic

disease (http://www.cancer.gov/). Aberrant activation of the

MAPK-signaling pathway plays a central role in melanoma

development, as exemplified by the frequent occurrence of acti-

vating mutations in BRAF (Brose et al., 2002; Davies et al., 2002).

Genetic and molecular analyses have demonstrated that onco-

genic BRAFV600E represents an initiating event in the evolution

of melanoma (Davies et al., 2002). Indeed, 80% of human nevi

harbor a BRAFV600E mutation (Pollock et al., 2003). Moreover,

mouse models of BRAFV600E develop melanoma only after a

long latency and with incomplete penetrance (Dankort et al.,

2009; Dhomen et al., 2009; F.A.K., D.P., and D.A.T., unpublished

data), suggesting that additional mutations are required for the

formation of frankmalignancy. Silencing of the tumor suppressor

PTEN represents one such mutation and is observed in�30% of

human melanoma cases (Tsao et al., 2004). In mice, complete or

partial PTEN loss dramatically accelerates BRAFV600E-induced

melanoma (Dankort et al., 2009), thus highlighting the oncogenic

potential of combined hyperactivation of PI3K/AKT and MAPK

signaling.

MicroRNAs (miRNAs) have been shown to regulate PTEN

and thus contribute to cell transformation mediated by aberrant

activation of the PI3K/AKT pathway (Poliseno et al., 2010a).

miRNAs are endogenous, noncoding�22 nucleotide RNAmole-

cules that bind to microRNA response elements (MREs) con-

tained in their target mRNAs (Bartel, 2009; Thomas et al.,

2010). This association recruits the RNA-induced silencing

complex (RISC) to target mRNA transcripts, thereby antago-

nizing their stability and/or translation (Bartel, 2009; Thomas

et al., 2010). miRNA-mediated modulation of mRNA levels is

conserved in most eukaryotic organisms and is considered

a mechanism to fine-tune gene expression. In recent years,

numerous examples of abnormal gene regulation by miRNA
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misexpression have been demonstrated to contribute to patho-

logical conditions (http://202.38.126.151/hmdd/mirna/md/).

mRNAs harbor multiple MREs and thus can be regulated by

several miRNAs, and miRNAs are known to target dozens of

mRNA transcripts. The fact that distinct RNA molecules can be

targeted by common miRNAs led us to propose that related

highly homologous mRNAs, such as gene-pseudogene pairs,

may act as miRNA decoys for each other. Pseudogenes are

considered ‘‘junk DNA,’’ as they lack a protein coding function

(D’Errico et al., 2004). However, by binding to common miRNAs,

pseudogene mRNAs may maintain the balance between their

ancestral genes and such miRNAs. Indeed, we have recently

demonstrated that the PTEN pseudogene transcript PTENP1

regulates the levels of PTEN through sequestration of shared

miRNAs (Poliseno et al., 2010b).

On this basis, we further hypothesized that the concept of gene

regulation by competition for common miRNAs is not limited to

pseudogenes and can be extended to mRNAs and long noncod-

ing RNAs and have termed RNA molecules that act as miRNA

decoys as ‘‘competitive endogenous RNAs’’ (ceRNAs) (Salmena

et al., 2011). Importantly, we proposed that the mRNA and the

protein encoded by ceRNAgenesmay be involved in distinct bio-

logical processes (Salmena et al., 2011). Employing bio-

informatics-guided prediction methods of MRE overlap, we

have discovered that multiple mRNAs serve as ceRNAs for

PTEN (Tay et al., 2011 [this issue of Cell]). Importantly, the

proteins encoded by PTEN ceRNAs have thus far not been asso-

ciated with the regulation of PTEN, supporting the notion that, in

some instances, mRNAs and the proteins that they encode may

be involved in distinct biological processes.

Our recent work suggests that mRNAs may act as tumor

suppressors or oncogenes through their ceRNA activity.

However, whether aberrant ceRNA expression is associated

with cancer development in general and whether loss of PTEN

ceRNAs promotes BRAFV600E-induced melanoma in vivo in

particular are unknown. Here, we report a striking enrichment

for PTEN ceRNAs among genes that were identified in a trans-

posonmutagenesis screen in an oncogenic BRAF-driven mouse

model of melanoma. Detailed functional analysis of one such

putative PTEN ceRNA, ZEB2, validated its protein-independent

and miRNA-dependent ability to regulate PTEN expression.

Moreover, we show that ZEB2 and PTEN are coregulated and

that ZEB2 levels are commonly attenuated in human cancers.

RESULTS

Identification of Putative PTEN ceRNAs Using In Vivo
Sleeping Beauty Insertional Mutagenesis
Oncogenic BRAFV600E is an initiating mutation in melanoma, and

whereas some other mutations such as loss of PTEN commonly

occur in melanoma, the full spectrum of tumor-promoting

genetic events remains to be determined. To this end, we per-

formed a forward genetic screen utilizing the Sleeping Beauty

transposon system in a B-RafV619E-driven mouse model of

melanoma (Figure S1 and Extended Experimental Procedures

available online), in which B-RafV619E corresponds to human

BRAFV600E. A detailed description and in-depth analysis of this

screen will be reported elsewhere (F.A.K., D.P., and D.A.T.,
unpublished data). In brief, we created mutant mice that carried

the following alleles: LoxP-STOP-LoxP-B-RafV619E (LSL-B-

RafV619E; F.A.K., D.P., and D.A.T., unpublished data), Tyrosi-

nase-CreERt2 (TyrCreERt2 [Bosenberg et al., 2006]), rosa26-

LoxP-STOP-LoxP-SleepingBeauty13 (LSL-SB; P.A.P.-M. and

D.A.T., unpublished data), and T2Onc (Collier et al., 2005). Treat-

ment of compound mutant LSL-B-RafV619E; TyrCreERt2; LSL-

SB; T2Onc mice with 4-OH Tamoxifen activated the melano-

cyte-specific Cre, leading to excision of the STOP cassettes

and expression of endogenous oncogenic B-Raf and SB13.

Sleeping Beauty transposase-mediated ‘‘hopping’’ of the

T2Onc transposon resulted in insertional mutagenesis, thereby

accelerating melanoma development (Figures 1A and S1 and

data not shown). 454 sequencing of genomic melanoma DNA

identified 320 genes with a significant enrichment of transposon

insertions, termed ‘‘common insertion sites’’ (CIS). Importantly,

PTEN was among the most significant CIS (data not shown),

thus demonstrating the ability of our Sleeping Beauty mutagen-

esis approach to identify key genes altered in melanoma.

As loss of PTEN expression cooperates with BRAFV600E (Dan-

kort et al., 2009; Tsao et al., 2004) and PTEN expression is regu-

lated by ceRNAs (Poliseno et al., 2010b; Tay et al., 2011), we

sought to determine whether Sleeping Beauty identified putative

PTEN ceRNAs that cooperate with B-RafV619E to accelerate

melanoma development (Figure 1A). We performed a mutually

targeted MRE enrichment (MuTaME) analysis (Figure 1B; Tay

et al., 2011) using the TargetScan prediction algorithm (Friedman

et al., 2009; Grimson et al., 2007; Lewis et al., 2005; http://www.

targetscan.org) for MREs located in 30UTRs. We postulated that

the ability of any given mRNA to act as a miRNA decoy for PTEN

increases with the number ofMREs that they share. The 30UTRof

murine PTEN was predicted to contain MREs for 39 different

miRNAs (Table S1). We set a stringent cutoff of at least seven

shared MREs between PTEN and putative PTEN ceRNAs for

the MuTaME analysis (Figure 1B). Using these conditions, we

identified 33 candidate PTEN ceRNAs among the 320 CIS

discovered in the Sleeping Beauty screen (Figure 1C). Notably,

this represented a significant enrichment of putative PTEN

ceRNAs (p = 7.76 3 10�11), as the MRE-based overlap with

PTEN expected by chance was only approximately nine genes.

Thus, our Sleeping Beauty approach uncovered putative PTEN

ceRNAs that promote cancer in an in vivo model of melanoma.

We ranked the 33 putative PTEN ceRNAs according to their

similarity with PTEN (Figure 2A). The similarity score is based

on a Poisson distribution: we used a linear combination, with

equal and opposite weights, of the dissimilarity based on distinct

occurrences and the additive similarity as defined previously

(van Helden, 2004). This approach utilized all miRNAs predicted

by TargetScan and the total number of their MREs located in the

30UTRs to obtain the similarity score for each CIS. Furthermore,

most candidate PTEN ceRNAs contain several MREs for the

same miRNAs, and thus the total numbers of MREs shared

with PTEN are even greater (Table S1).

PTEN ceRNAs Modulate Expression of PTEN
To examine whether the identified putative PTEN ceRNAs regu-

late expression of PTEN, we performed RNAi-mediated gene

silencing in human melanoma cells using pools of four siRNAs
Cell 147, 382–395, October 14, 2011 ª2011 Elsevier Inc. 383
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Figure 1. Identification of Putative PTEN

ceRNAs

(A) Schematic outline of our hypothesis: onco-

genic BRAF mediates the transformation from

melanocytes to nevi, and additional loss of PTEN

promotes progression to melanoma. PTEN

expression is regulated by PTEN ceRNAs, which

sequester PTEN-targeting miRNAs. Transposon

insertion into ceRNA gene loci suppresses their

expression, which results in increased availability

of PTEN-targeting miRNAs and a reduction of

PTEN expression.

(B) Bioinformatics approach to identify putative

PTEN ceRNAs among Sleeping Beauty CIS. MREs

predicted by TargetScan in the murine PTEN

30UTR were utilized for a mutually targeted MRE

enrichment (MuTaME) analysis to determine MRE

overlap between PTEN and Sleeping Beauty CIS.

CIS that share seven or more MREs with PTEN

were considered putative PTEN ceRNAs.

(C) Enrichment of putative PTEN ceRNAs among

Sleeping Beauty CIS. The Sleeping Beauty screen

identified 320 CIS, 33 of which are putative PTEN

ceRNAs. This enrichment is highly significant (p =

7.76 3 10�11).

See also Table S1 and Figure S1.
to reduce off-target effects. We selected eight putative PTEN

ceRNAs (AFF1, DCBLD2, JARID2, MBNL1, RBM9, TNRC6a,

TNRC6b, and ZEB2) and depleted them in WM35 cells (Fig-

ure 2B). Knockdown of seven genes led to reduction of PTEN,

six of which significantly attenuated PTEN expression (AFF1,

JARID2, MBNL1, RBM9, TNRC6a, TNRC6b, and ZEB2). A

reduction of PTENmRNA levels following PTEN ceRNA silencing

was also evident in WM35 cells (Figure S2A). In a second human

melanoma cell line, A375, decreased PTEN expression was also

observed following PTEN ceRNA knockdown, albeit at lower

levels (Figures S2C and S2D). The knockdown efficiencies are

shown in Figures S2B and S2E. Interestingly, in some instances,
384 Cell 147, 382–395, October 14, 2011 ª2011 Elsevier Inc.
depletion of PTEN resulted in downregu-

lation of the putative PTEN ceRNA

(Figures S2B and S2E), indicating that

the regulatory relationship between

PTEN and PTEN ceRNAs might be

reciprocal. Importantly, we found that

CNOT6L, a PTEN ceRNA that we pre-

dicted using the rna22 algorithm and vali-

dated in prostate cancer (Tay et al., 2011),

was a CIS identified by Sleeping Beauty.

Similar to its ceRNA function in prostate

cancer cells (Tay et al., 2011), siRNA-

mediated knockdown of CNOT6L signifi-

cantly reduced PTEN expression in both

human melanoma cell lines (Figures 2B

and S2C).

Critically, the T2Onc transposons in-

serted in PTEN and the putative PTEN

ceRNAs in both orientations throughout

the genes (Figure S2F). This insertion
pattern is indicative of gene repression via the polyadenylation

signals rather than gene activation by the MSCV promoter

(Collier et al., 2005). Thus, these CIS are likely tumor suppres-

sors. Taken together, these results indicate that the candidate

ceRNAs identified by Sleeping Beauty may indeed act as

tumor-suppressive ceRNAs for PTEN.

ZEB2 Silencing Results in Attenuated PTEN Expression
As silencing of several of the putative PTEN ceRNAs led to

reduced PTEN protein levels, we sought to further validate

and characterize the ability of a CIS mRNA to function as

a PTEN ceRNA. None of the seven CIS that reduced PTEN



Gene 
symbol

Similarity 
score

Common 
MREs

Pten 1.000 39

Tnrc6b 0.625 27

Zfp148 0.336 16

Taok1 0.287 14

Ubn2 0.280 14

Lrch1 0.253 12

Dcbld2 0.245 12

Cask 0.244 12

Epc2 0.210 10

Bach2 0.209 11

Mll1 0.207 11

0.206 11

Tnrc6a 0.197 10

Mbnl1 0.194 10

Epc1 0.192 10

Chd9 0.177 9

Jarid2 0.176 9

Dtna 0.168 9

Zeb2 0.166 9

Aff1 0.158 8

Etv6 0.154 8

Prickle2 0.153 8

Ank3 0.151 8

Rbm9 0.143 8

Rapgef2 0.137 8

Kcna1 0.131 8

Zeb1 0.127 7

Csmd1 0.126 7

Cdk13 0.125 7

Asxl2 0.124 7

Dip2c 0.123 7

Rock2 0.119 7

Slc6a6 0.117 7

Fndc3b 0.111 7
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Figure 2. Putative PTEN ceRNAs Modulate

PTEN Expression Levels

(A) List of candidate PTEN ceRNAs identified by

Sleeping Beauty. The 33 putative PTEN ceRNAs

are ranked by their similarity score, which is based

on the identity and number of MREs, as well as the

length of the CIS 30UTRs. The number of MREs

shared between PTEN and the individual CIS is

also shown.

(B) Western blot (top) and quantification (bottom)

of siRNA-mediated knockdowns of putative

PTEN ceRNAs in WM35 human melanoma cells.

HSP90 expression is shown as a loading control,

and PTEN expression levels were normalized to

HSP90.

(C) Transposon insertion does not increase

expression of the ZEB2 30UTR (left) or PTEN 30UTR
(right). qRT-PCR depicting the ratio between ZEB2

50UTR and 30UTR expression levels in melanomas

with transposon insertions in CDKN2A, PTEN, or

ZEB2 is shown.

(D) Melanomas with ZEB2 transposon insertions

express less PTEN. Western blot showing

expression of PTEN and ZEB2 in melanomas iso-

lated from LSL-B-RafV619E; TyrCreERt2 mice

(control) or LSL-B-RafV619E; TyrCreERt2; LSL-SB;

T2Onc mice with a transposon insertion in either

PTEN (CIS: PTEN) or ZEB2 (CIS: ZEB2). Quantifi-

cation of the western analysis is shown in the

bottom panel. Note that PTEN and ZEB2 expres-

sion is diminished in tumors with either PTEN or

ZEB2 insertions.

NC, negative control (nontargeting siRNA pool).

Data are represented as mean ± SEM. See also

Figure S2.
levels in WM35 melanoma cells code for a known tumor

suppressor protein. The ZEB2 protein, however, has been well

established as an activator of the epithelial-to-mesenchymal

transition (EMT) (Gregory et al., 2008; Vandewalle et al., 2005)

and therefore plays a critical role in the progression of epithelial

cancers. Whether the ZEB2 protein is protumorigenic in mela-

noma is unknown; however, as a PTEN ceRNA, the ZEB2

mRNA may be tumor suppressive. Given the potentially distinct

function of the ZEB2 protein and transcript, we decided to

examine whether ZEB2 mRNA exerts a tumor-suppressive

function in melanoma through its competition for PTEN-target-

ing miRNAs.

Transposon insertions in the 50-30 orientation in the ZEB2 locus
could theoretically allow for overexpression of the ZEB2 30UTR,
whichwould potentially sequester miRNAs from PTEN and result

in elevated PTEN levels. To ascertain that the ZEB2 30UTR is not

overexpressed in melanomas with such insertions, we analyzed

the expression ratio of the ZEB2 50UTR and 30UTR. Importantly,

we observed a 1:1 ratio of expression in all cases, thus excluding
Cell 147, 382–395,
overexpression of the 30UTR (Figure 2C).

As an additional control, we tested the

effects of transposon insertion in the

PTEN locus. Similarly, tumors with trans-

poson insertions in the 50-30 orientation
did not display an increase in the PTEN
30UTR:50UTR ratio (Figure 2C), indicating that the transposon

acts as a gene trap in these cases. We further tested whether

ZEB2 protein levels are affected by transposon insertions.

PTEN and ZEB2 are readily detectable by immunoblotting in

melanomas without transposon insertions (Figure 2D, lanes

1–4). In contrast, transposon insertion in either PTEN (Figure 2D,

lanes 5–7) or ZEB2 (Figure 2D, lanes 8–10) reduced expression of

both proteins (Figure 2D). These data confirm that transposon

insertion in PTEN and ZEB2 represses gene expression and indi-

cate that ZEB2 reduction modulates protein levels of PTEN.

Moreover, the decrease in ZEB2 expression in tumors with

a PTEN transposon insertion suggests that the PTEN-ZEB2

miRNA decoy mechanism may be reciprocal.

To further examine the regulation of PTEN by ZEB2 via miRNA

sequestration, we used pools of four siRNAs to deplete PTEN or

ZEB2 in a primary murine melanoma cell line, TB13602, isolated

from a LSL-B-RafV619E; TyrCreERt2 mouse. Knockdown of

ZEB2 in TB13602 cells reduced PTEN protein levels by �60%

(Figure 3A). RNAi-mediated silencing of PTEN led to a slight
October 14, 2011 ª2011 Elsevier Inc. 385
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Figure 3. ZEB2 Depletion Downregulates PTEN

(A) ZEB2 silencing lowers PTEN protein levels in murinemelanoma cells TB13602.Western analysis for PTEN and ZEB2 expression andHSP90 as loading control

is shown in the left panel. Quantification of three independent western analyses is shown in the right panel.

(B) AKT activation kinetics in TB13602 cells following ZEB2 depletion. Cells were starved overnight and stimulated with 10% FCS-containing media for the

indicated time points. Western blots for phosphorylated AKT (pAKT), total AKT, ZEB2, and PTEN are shown in the left panel; quantification of pAKT is shown in the

right panel.

(C) ZEB2 silencing in humanmelanoma cell lines lowers PTEN expression and activates AKT. A375 andWM35melanoma cells lines were transfected with siRNA

pools against PTEN or ZEB2. Western analysis for PTEN, ZEB2, and phospho-AKT is shown. HSP90 and total AKT were used as loading controls.

(D) Quantification of PTEN expression in A375 and WM35 cells in three independent western analyses. PTEN expression was normalized to HSP90 levels.

(E) Quantification of AKT activation in A375 andWM35 cells in three independent western analyses. Phospho-AKT expression was normalized to total AKT levels.

(F) qRT-PCR analysis of PTEN and ZEB2 expression in TB13602 cells.

(G and H) qRT-PCR analyses of PTEN and ZEB2 expression in A375 (G) and WM35 (H) cells. Mouse and human siRNA pools against PTEN and ZEB2 efficiently

reduce PTEN and ZEB2 mRNA, respectively. Note the reciprocal effect of ZEB2 knockdown on PTEN expression levels and vice versa in WM35 cells.

NC, negative control (nontargeting siRNA pool). Data are represented as mean ± SEM. See also Figure S3.
attenuation of ZEB2 expression (Figure 3A), similar to the results

obtained in melanomas with PTEN or ZEB2 CIS (Figure 2D).

As PTEN is a major antagonist of PI3K/AKT signaling, we

examined whether ZEB2-mediated reduction of PTEN activates
386 Cell 147, 382–395, October 14, 2011 ª2011 Elsevier Inc.
this pathway. ZEB2 depletion had no effect on AKT phosphory-

lation at steady-state levels (data not shown); however, upon

starvation and restimulation, ZEB2-depleted cells displayed

elevated AKT activation compared to control cells (Figure 3B).



We next analyzed whether ZEB2 acts as a PTEN ceRNA in

human melanoma cells. In four human melanoma cell lines,

PTEN protein levels were reduced following knockdown of

ZEB2 (Figures 3C, 3D, and S3A). Moreover, depletion of ZEB2

led to AKT activation in these cell lines (Figures 3C, 3E, and

S3A). Importantly, ZEB2 siRNAs without potential seed matches

to PTEN efficiently lowered PTEN levels in mouse and human

melanoma cells (Figure S3B), indicating that PTEN downregula-

tion is not due to off-target effects of the ZEB2 siRNA pools.

Interestingly, ZEB2 depletion had only minor and statistically

insignificant effects on PTEN mRNA levels in TB13602 and

A375 cells (Figures 3F and 3G), whereas it significantly reduced

PTEN transcript in WM35 cells (Figure 3H). These data suggest

that the miRNAs mediating the functional interaction of PTEN

and ZEB2 regulate mRNA stability in a cell line-dependent

fashion, whereas their control of translation is a more universal

phenomenon.

Repression of PTEN by ZEB2 Loss Is 30UTR and miRNA
Dependent
These in vitro and in vivo data support the notion that ZEB2 acts

as a PTEN ceRNA. They do not exclude, however, the transcrip-

tional regulation or protein stability as potential mechanisms of

ZEB2 loss-mediated PTEN reduction. We addressed these

possibilities by ectopic expression of a luciferase-PTEN30UTR
reporter construct in TB13602 cells, followed by knockdown of

PTEN or ZEB2. Silencing of either PTEN or ZEB2 increased

the availability of shared miRNAs, thereby suppressing the

luciferase-PTEN30UTR reporter as measured by diminished

luciferase activity (Figure 4A). Importantly, as the luciferase-

PTEN30UTR reporter construct is expressed from a CMV

promoter and does not code for a PTEN peptide, reduced lucif-

erase activity was dependent on the PTEN 30UTR, thus elimi-

nating transcriptional regulation and protein stability as explana-

tions for the ZEB2-PTEN functional interaction.

To exclude the involvement of RNA-binding proteins that

could regulate PTEN mRNA translation through its 30UTR, we

used cells deficient for the miRNA biogenesis protein Dicer to

examine whether ZEB2 controls PTEN levels in a miRNA-depen-

dent manner. In Dicer wild-type HCT116 colon carcinoma cells,

siRNA against ZEB2 lowered PTEN levels, similar to our observa-

tion in melanoma cells (Figure 4B). In contrast, ZEB2 depletion

failed to reduce PTEN expression in Dicer null HCT116 cells (Fig-

ure 4B). Moreover, ZEB2 knockdown decreased PTEN mRNA

only in Dicer wild-type cells, but not in Dicer-deficient cells (Fig-

ure 4C). Conversely, PTEN silencing resulted in diminished ZEB2

mRNA levels in Dicer wild-type HCT116 cells, which was

rescued in Dicer-deficient HCT116 cells (Figure 4C). Similar to

PTEN attenuation, AKT activation by ZEB2 silencing is only

evident in Dicer wild-type HCT116 cells (Figure 4D). These

data indicate that regulation of PTEN expression by ZEB2 is

indeed miRNA dependent.

As ablation of ZEB2 mRNA reduces PTEN expression due to

increased availability of common miRNAs, overexpression of

ZEB2 mRNA should have the opposite effect. However, ectopic

expression of full-length ZEB2mRNA would also increase ZEB2

protein. We therefore overexpressed only the ZEB2 30UTR to

uncouple potential effects of elevated ZEB2 protein on PTEN
expression, such as transcriptional regulation, from the

miRNA-based regulation via MREs. This approach was also

used to show that the 30UTRs of other putative PTEN ceRNAs

increase PTEN levels in prostate cancer (Poliseno et al.,

2010b; Tay et al., 2011). We expressed the 30UTRs of ZEB2 or

PTEN in A375 and TB13602melanoma cells. Cells were cotrans-

fected with the luciferase-PTEN30UTR reporter construct to

measure the ceRNA activity of ectopically expressed 30UTRs
on transcripts containing the PTEN 30UTR. Critically, the ZEB2

30UTR significantly increased the activity of the luciferase-

PTEN30UTR reporter (Figures 4E and 4F). Moreover, PTEN

protein levels were increased when the PTEN and ZEB2 30UTRs
were overexpressed in A375 cells (Figure 4G) and Dicer wild-

type HCT116 cells (Figure 4H). Elevated expression of PTEN

was rescued by Dicer deficiency in HCT116 cells (Figure 4H).

Similarly, overexpression of the ZEB2 30UTR significantly

increased the activity of the luciferase-PTEN 30UTR reporter in

HCT116 cells, and Dicer deficiency partially negated this effect.

Critically, overexpression of the ZEB2 coding sequence had no

effect on PTEN protein levels in HCT116 cells (Figure S4).

Thus, depletion as well as overexpression of ZEB2 mRNA alters

the balance between PTEN mRNA and common miRNAs,

thereby impacting PTEN expression.

Analysis of miRNAs Common to PTEN and ZEB2

To elucidate which of the miRNAs predicted to target PTEN and

ZEB2 mediate the observed crosstalk, we further characterized

the effect of these miRNAs on PTEN and ZEB2 expression. First,

we interrogated which MREs were predicted to be common

between the 30UTRs of PTEN and ZEB2. TargetScan predicted

that PTEN and ZEB2 are targets for nine shared miRNA fami-

lies and that they contain a total of 14 and 16 MREs for these

miRNAs, respectively (Figure 5A). Of these miRNAs, several

have been validated as PTEN-targeting miRNAs (miR-25, miR-

32, miR-92ab, miR-141, miR-144, miR-363, and miR-367) (Lee

et al., 2010; Poliseno et al., 2010a; Zhang et al., 2010), whereas

only the miR-200 family has been validated as repressors of

ZEB2 (Gregory et al., 2008; Korpal et al., 2008; Park et al.,

2008). We next delivered miRNA mimics for one member of

each miRNA family predicted to target PTEN and ZEB2 to

TB13602 cells and analyzed PTEN and ZEB2 protein levels. Of

the ten miRNAs tested, four targeted PTEN and ZEB2 to some

extent (miR-181, miR-200b, miR-25, and miR-92a) (Figure 5B).

We next determined the expression levels of these ten miRNAs

in melanoma cells. Interestingly, miRNA expression levels were

similar between the three different melanoma cell lines analyzed

(Figure 5C), and all four miRNAs that target PTEN and ZEB2were

expressed in the melanoma cell lines (Figure 5C).

Next, we examined whether the four suppressive miRNAs

(miR-181, miR-200b, miR-25, and miR-92a) that are expressed

in melanoma associate with the 30UTRs of PTEN and ZEB2. To

this end, we performed RNA immunoprecipitations (RIPs) in

melanoma cells using the PTEN and ZEB2 30UTRs as baits.

Notably, all four miRNAs associated with the 30UTRs of PTEN

and ZEB2, and a control miRNA with no predicted MRE in

PTEN and ZEB2 bound neither 30UTR (Figure 5D). Furthermore,

knockdown of either PTEN or ZEB2 increased miRNA avail-

ability, as determined by increased association of miR-92a
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Figure 4. Regulation of PTEN by ZEB2 Is 30UTR and miRNA Dependent

(A) Effect of ZEB2 depletion on luciferase activity of a luciferase-PTEN30UTR reporter. Knockdown of PTEN (positive control) and ZEB2 reduces luciferase activity

measured in relative light units (RLU).

(B) ZEB2 depletion lowers PTEN expression in wild-type HCT116 colon cancer cells, but not in Dicer-deficient HCT116 cells. Western blot showing expression

of PTEN and HSP90 as loading control in wild-type and Dicer null HCT116 cells (top). (Bottom) Quantification of three independent western blot analyses.
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with the MS2-PTEN 30UTR bait mRNA (Figure 5E). Taken

together, ZEB2 sequesters at least four miRNAs (miR-181,

miR-200b, miR-25, and miR-92a) to regulate PTEN levels, and

ZEB2 downregulation increases the availability of at least one

of these miRNAs.

ZEB2 Displays Tumor-Suppressive Properties
in Melanoma Cells
As decreased PTEN expression drives the formation of

numerous types of cancer, we determined whether aberrant

control of PTEN by loss of ZEB2 enhanced oncogenic transfor-

mation of melanoma cells. Indeed, knockdown of either PTEN

or ZEB2 increased proliferation of TB13602 cells (Figure 6A)

and WM35 cells (Figure 6B), whereas neither PTEN nor ZEB2

silencing significantly altered the proliferation rate of A375 cells

(Figure 6C). Importantly, anchorage-independent growth in soft

agar was enhanced by depletion of PTEN or ZEB2 in all three

melanoma cell lines (Figures 6D–6F). We next determined

whether this ceRNA crosstalk would be operational in vivo. To

this end, we lentivirally delivered a short hairpin against ZEB2

to TB13602 cells and examined their oncogenic properties.

shRNA-mediated knockdown of ZEB2 lowered expression of

PTEN (Figure 6G), accelerated proliferation (Figure 6H), and

increased the in vivo growth of xenografted tumors in nude

mice (Figure 6I). These data support the notion that ZEB2 has

tumor-suppressive activity in melanoma cells, which is, at least

in part, due to ZEB2 mRNA-mediated regulation of PTEN

expression.

Functional Crosstalk of ZEB2 and PTEN in Human
Cancer
We reasoned that, if PTEN and ZEB2 expression is linked

through several shared miRNAs, then their mRNA expression

levels might be coregulated. We interrogated mRNA levels in

a set of human primary melanoma samples (Halaban et al.,

2009) and found that PTEN and ZEB2 expression indeed signif-

icantly correlated (Figure 7A). Using the same set of expression

data, we asked whether PTEN and ZEB2 expression is dimin-

ished in melanomas compared to normal melanocytes. Neither

PTEN nor ZEB2 mRNA was significantly decreased in mela-

nomas in this data set (Figure S5A), which is in line with the

finding that PTEN expression is lost in only 30% of melanomas

(Tsao et al., 2004). We therefore examined whether decreased

ZEB2 expression would be evident in tumors with reduced

PTEN levels. We subdivided the tumor specimens into two
(C) ZEB2 expression is efficiently reduced following treatment of HCT116 cells

expression of PTEN and ZEB2.

(D) Activation of AKT following ZEB2 depletion is miRNA dependent. Western b

(Bottom) Quantification of three independent western blot analyses.

(E and F) Overexpression of ZEB 30UTR increases PTEN 30UTR reporter activity. A

PTEN30UTR reporter and expression plasmids containing either the PTEN 30UTR
graph depicts the fold increase in RLU when PTEN 30UTR or ZEB2 30UTR was e

(G) Overexpression of ZEB2 30UTR or PTEN 30UTR increases PTEN levels in A37

(Bottom) Quantification of PTEN expression in three independent experiments.

(H) Western analyses showing PTEN expression in response to ZEB2 30UTR over

three independent western blot analyses.

(I) Effect of overexpression of the ZEB2 30UTR on the activity of a luciferase-PTE

Data are represented as mean ± SEM. NC, negative control (nontargeting siRNA
groups: melanomas with PTEN expression above average

(‘‘PTEN high’’) and tumors with PTEN expression below average

(‘‘PTEN low’’). Intriguingly, when compared to normal melano-

cytes, ZEB2 expression was significantly decreased only in the

‘‘PTEN low’’ subset (Figures 7B and Figure S5A), suggesting

that ZEB2 and PTEN mRNAs may coregulate each other in

melanoma.

We further determined whether the PTEN-ZEB2 relationship is

specific to melanoma or whether other tumor types display

a similar mode of PTEN regulation. Indeed, we identified signifi-

cant coexpression of PTEN and ZEB2 in primary prostate cancer

(Figure 7C). Moreover, ZEB2 expression is significantly reduced

in primary prostate cancer samples with a ‘‘PTEN low’’ expres-

sion profile (i.e., PTEN expression level below average) when

compared to normal prostatic epithelium or all prostate tumors

(Figures 7D and S5B). We analyzed three additional mRNA

expression data sets for melanoma, colon carcinoma, and glio-

blastoma and found that both PTEN and ZEB2were significantly

downregulated in these tumors when compared to normal tissue

(Figures 7E–7G). Finally, by interrogating human-mouse

conserved and human-specific mRNA coexpression networks,

we found that PTEN and ZEB2 mRNA show a significant corre-

lation of coexpression in several human tissues (Figure S5C).

Taken together, our data demonstrate that ZEB2 sequesters

miRNAs from PTEN and thereby regulates PTEN expression.

This mode of PTEN regulation was identified in murine and

human melanomas, as well as human prostate, colon, and brain

cancer.

DISCUSSION

We report here the identification, functional characterization, and

relevance of ceRNAs in cancer biology in vivo. By means of

a forward genetics approach using Sleeping Beauty insertional

mutagenesis in a mouse model of melanoma, we discovered

multiple putative ceRNAs for the tumor suppressor PTEN.

Further in vitro characterization validated the EMT regulator

ZEB2 as a PTEN ceRNA, and human cancer data corroborated

its functional relationship with PTEN. We therefore provide

evidence that aberrant regulation of PTEN via miRNA competi-

tion by ceRNAs contributes to melanoma development.

The results presented here further support our hypothesis that

protein-coding mRNAs communicate and coregulate each other

through competition for miRNAs that target both transcripts (Sal-

mena et al., 2011; Tay et al., 2011). Importantly, as regulation
with ZEB2 siRNA. qRT-PCR analysis of HCT116 cells treated with siRNA for

lot for pAKT and total AKT in WT and Dicer null HCT116 cells is shown (top).

375 (E) or TB13602 (F) melanoma cells were cotransfected with the luciferase-

or ZEB2 30UTR, followed by luciferase activity measurement 3 days later. The

xpressed compared to an empty control vector.

5 cells. Western blot for PTEN and HSP90 as a loading control is shown (top).

expression in WT and Dicer null HCT116 cells (top). (Bottom) Quantification of

N 30UTR reporter in WT and Dicer null HCT116 cells is shown.

pool). See also Figure S4.
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Figure 5. Characterization of miRNAs that Are Common to PTEN and ZEB2

(A) miRNA response elements (MREs) shared by PTEN and ZEB2. This table depicts the ninemiRNAs that the 30UTRs ofPTEN and ZEB2 have in common, as well

as the number of sites for each miRNA.

(B) Multiple miRNAs target both PTEN and ZEB2. Western analysis of PTEN and ZEB expression in TB13602 melanoma cells treated with the indicated miRNAs

is shown. Actin expression is shown as a loading control. Quantification of the western blot is shown in the bottom panel.

(C) Expression of common miRNAs in A375, WM35, and TB13602 melanoma cells as determined by qRT-PCR. n.d., not detectable.

(D) MS2-RIP followed by qRT-PCR to identify endogenous miRNAs associated with the PTEN and ZEB2 30UTRs.
(E) MS2-RIP followed by qRT-PCR to identify miRNA binding to the PTEN 30UTR in cells depleted for PTEN or ZEB2.

NC, negative control (nontargeting siRNA pool). Data are represented as mean ± SEM.
through miRNA sequestration is solely based on MREs, our find-

ings ascribe a predictable and protein coding-independent func-

tion to mRNA molecules. Furthermore, we establish a means of
390 Cell 147, 382–395, October 14, 2011 ª2011 Elsevier Inc.
regulatory interaction betweenmRNAs that is based onMREs as

functional units. MREs can be found on both protein-coding and

noncoding mRNAs, thus challenging the notion that mRNAs are



mere blueprints for peptide synthesis. Though other examples of

coding-independent functions of mRNAs have been previously

described (Candeias et al., 2008; Jenny et al., 2006), our findings

bestow on any RNA molecule functions that may be predicted

based on their MRE sequence (Salmena et al., 2011). Our find-

ings of a microRNA-mediated andMRE-dependent gene regula-

tory ceRNA dimension are corroborated by two other studies

demonstrating ceRNA activity for protein coding (Sumazin

et al., 2011 [this issue of Cell]) and noncoding RNA (Cesana

et al., 2011 [this issue of Cell]) molecules.

Using bioinformatics approaches and in vitro experimental vali-

dation, we have successfully predicted and characterized several

ceRNAs that regulate the tumorsuppressorPTEN(Tayetal., 2011).

In the work presented here, we undertook an unbiased genetic

in vivo approach to uncover mutational events that cooperate

with oncogenic BRAF to promote melanoma development. Not

only did this approach identify PTEN, a known cooperator of

oncogenic BRAF in melanoma, but it also generated a list of CIS

that was significantly enriched for putative PTEN ceRNAs. Thus,

our genetic approach represents an alternative and more func-

tional way of identifying PTEN ceRNAs, which complements our

bioinformatics-based ceRNA prediction method.

We have previously used the rna22 prediction algorithm in

conjunction with ten validated, 30UTR-binding PTEN miRNAs

(miR-17-5p, miR-19a, miR-19b, miR-20a, miR-20b, miR-26a,

miR-26b, miR-93, miR-106a, and miR-106b) to predict PTEN

ceRNAs (Tay et al., 2011). To screen the murine melanoma CIS

for candidate PTEN ceRNAs, we instead employed TargetScan,

as this algorithm considers MRE conservation between

mammals. TargetScanpredictedPTENas a target for 39different

miRNAs (Table S1), which were used to screen the Sleeping

Beauty CIS to identify putative PTEN ceRNAs. However, we

also compared our list of 320 CIS with the rna22-generated list

of putative PTEN ceRNAs and found an overlap of four genes:

CNOT6L, MEF2A, PDS5B, and ROCK2. These four putative

PTEN ceRNAs were not predicted by TargetScan, which is due

to the fact that TargetScan considers the miR-17-5p/20ab/93/

106ab/519, miR-19ab, and miR-26ab families each as single

MREs, whereas we considered them as individual MREs for our

rna22-based prediction of PTEN ceRNAs. Thus, though

CNOT6L, MEF2A, PDS5B, and ROCK2 share more than seven

MREs with PTEN if they are considered individually (rna22

approach), they fall under the threshold of seven MREs if each

miRNA family is considered as oneMRE (TargetScan approach).

Therefore, rna22 and TargetScan prediction algorithms, as well

as the use of only validated or all predicted MREs, can success-

fully be used to predict PTENceRNAs. These findings are of great

relevance, as they validate and generalize our MuTaME predic-

tions irrespective of the algorithms employed.

We have proposed a set of rules and a methodology to vali-

date and characterize ceRNAs (Tay et al., 2011). By applying

thismethodology, we have confirmed thatZEB2 acts as a ceRNA

for the tumor suppressor PTEN. Indeed, we found a significant

correlation between the expression of ZEB2 and PTEN in human

melanomas and prostate cancer (Figure 7). Moreover, compared

to benign tissues, ZEB2 expression was significantly reduced in

tumors with low PTEN expression levels (Figure 7). Thus, ZEB2

has tumor-suppressive properties. The ZEB2 protein promotes
EMT by repressing expression of E-Cadherin (Vandewalle

et al., 2005) and thus may be involved in promoting cancer

progression and metastasis in some instances of epithelial

cancers. Indeed, the miR-200 family regulates expression of

ZEB2 (Gregory et al., 2008; Korpal et al., 2008; Park et al.,

2008) and is commonly associated with EMT and cancer

progression (Mezzanzanica et al., 2010; O’Day and Lal, 2010;

Pang et al., 2010). In melanoma cells, miR-200 does not appear

to repress EMT and invasion, but rather, different miR-200 family

members mediate alternative modes of melanoma cell migration

(Elson-Schwab et al., 2010). It has been reported that ZEB2

expression is suppressed by p53-mediated upregulation of

miR-200 (Kim et al., 2011), suggesting that p53 deficiency

promotes EMT through induction of ZEB2. However, p53 muta-

tions are rare in melanoma (http://www.sanger.ac.uk/genetics/

CGP/cosmic/), making upregulation of ZEB2 via this route

unlikely. Moreover, whether EMT is involved in progression of

cancers of nonepithelial origin, such as melanoma, is unclear.

We hypothesized that, in certain instances, mRNA and protein

encoded by the same gene may exert different biological effects

(Salmena et al., 2011). ZEB2 powerfully exemplifies such a case,

acting as a tumor suppressor by regulating PTEN expression

through its mRNA in melanoma, whereas the protein promotes

tumor progression and metastasis by controlling EMT in epithe-

lial cancers.

Insertional mutagenesis screens using retroviruses or transpo-

sons have been widely used to discover cancer genes. Our work

encourages the integration of the classic ‘‘protein dimension’’

with an additional ‘‘ceRNA dimension’’ when analyzing the

‘‘hits’’ of such screens. By doing so, genes that are initially clas-

sified as false positives based on their protein function may, in

fact, be cancer-promoting genes by means of their ceRNA

activity. In addition, previously performed insertional mutagen-

esis screens couldbe re-interrogated for thepresenceof ceRNAs

of prominent cancer genes using bioinformatics MRE prediction

methods described here and in Tay et al. (2011). This may reveal

a so far unappreciated genetic dimension, with a role in cancer

development and the pathogenesis of other human conditions.

EXPERIMENTAL PROCEDURES

Plasmids

The 30UTRs of mouse and human ZEB2 and human PTEN were amplified by

PCR from genomic DNA and cloned into pCDNA3 or pCMV according to stan-

dard procedures. Generation of PTEN30UTR-psiCHECK-2 is described by Tay

et al. (2011). Primer sequences are available upon request.

Cell Culture and Transfection

A375, WM35, 451Lu, and WM278 human melanoma cells were obtained from

M. Herlyn (Wistar Institute) and cultured as previously reported (Tsao et al.,

2004). TB13602, HCT116 wild-type, and Dicer�/� cells were grown in Dulbec-

co’s modified Eagle’s medium (DMEM) supplemented with 10% FCS, peni-

cillin/streptomycin, and glutamine at 37�C in a humidified atmosphere with

5% CO2. Cells were transfected with 100 nM siRNAs and Dharmafect 1 or

1.5 ug of plasmid DNA and Lipofectamine 2000 in 12-well plates according

to the manufacturer’s recommendations for transfection.

Western Blot Analysis

Cells were lysed in RIPA buffer containing Complete Mini protease inhibitors

(Roche) and a Phosphatase Inhibitor cocktail (Sigma). Total protein (5–20 mg)
Cell 147, 382–395, October 14, 2011 ª2011 Elsevier Inc. 391
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Figure 6. ZEB2 Displays Tumor-Suppressive Properties in Melanoma Cells

(A–C) Proliferation curves of TB13602 (A), WM35 (B), and A375 (C) melanoma cells treated with siPTEN, siZEB2, and NC are shown.

(D–F) Anchorage-independent growth in soft agar. Representative pictures of TB13602 (D),WM35 (E), and A375 (F) are shown on the right, and quantifications are

shown on the left.

(G) Western blot showing ZEB2 and PTEN expression in TB13602 cells infected with shZEB2 and shGFP pLKO.1 lentiviruses (top). (Bottom) Quantification of

western analysis.
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Figure 7. Functional Crosstalk of PTEN and ZEB2 in Human Cancer

(A) mRNA expression of PTEN and ZEB2 correlates in human melanoma. Graph showing mRNA expression levels for PTEN and ZEB2 in human melanoma

samples, in which each dot corresponds to one tumor sample. Pearson score shows a positive and significant correlation.

(B)ZEB2mRNAexpression is significantly lower in humanmelanomaswith reducedPTEN expressionwhen compared to normal melanocytes. Box plot depicting

mRNA expression levels for PTEN and ZEB2 in normal melanocytes and ‘‘PTEN low’’ tumors (melanomas with PTEN mRNA expression below the average).

(C) Correlation of PTEN and ZEB2 mRNA expression in human prostate cancer samples. Similar to (A), each dot represents one tumor sample. Pearson score

shows a positive and significant correlation.

(D) ZEB2 expression is significantly reduced in prostate tumors with low PTEN mRNA expression levels. Box plot showing PTEN and ZEB2 mRNA expression

levels in normal adjacent prostate and primary prostate adenocarcinoma.

(E–G) Additional mRNA expression data sets showing reduced PTEN and ZEB2 mRNA levels in melanoma (E), colon carcinoma (F), and glioblastoma (G)

compared to normal tissue.

In the box plots, the top and bottomboxes represent the 75th and 25th percentile, respectively, and thewhiskers represent theminimum andmaximum of all data

points. See also Figure S5.
was subjected to SDS-PAGE on 4%–12%Bis-Tris acrylamide NuPAGE gels in

MOPS SDS buffer (Invitrogen). The following primary antibodies were used:

HSP90 (BD), PTEN, phospho-AKT (p473), and total-AKT (Cell Signaling) and
(H) Proliferation curves of cells shown in (G).

(I) Quantification of xenograft tumor volume of TB13602 cells infected with shZE

Data are represented as mean ± SEM. NC, negative control (nontargeting siRNA
ZEB2 and actin (Santa Cruz Biotechnologies). Subsequently, membranes

were incubated with secondary HRP-tagged antibodies (Amersham), and

signals were visualized with ECL or ECL plus (Amersham).
B2 and shGFP pLKO.1 lentiviruses.

pool).
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RNA Extraction and Real-Time PCR

For real-time PCR analyses, total RNA was extracted using the Qiashredders

and RNeasy Mini Kit (QIAGEN) according to the manufacturer’s recommenda-

tions. cDNA was synthesized using the High Capacity cDNA Reverse

Transcriptase Kit according to the manufacturer’s instructions (Applied

Biosystems) and was analyzed by real-time PCR using taqman gene expres-

sion assays (Applied Biosystems) on a LightCycler 480 System (Roche Applied

Science).

Luciferase Assays

TB13602 or A375 cells were transfected with 150 ng of empty psiCHECK2

vector or psiCHECK2-PTEN30UTR and either 100 nM siRNA or 1 mg 30UTR
vector constructs using Lipofectamine 2000 according to manufacturer’s

recommendations. In all transfections, firefly luciferase activity was used as

a normalization control for transfection efficiency. Seventy-two hours after

transfection, luciferase activities were measured consecutively with the dual

luciferase reporter system (Promega) using a luminometer (Promega).

Cell Proliferation

Cells were plated in triplicates in 12-well plates at a final density of 2 3 104/

well. On days 1–4 after plating, cells were washed with PBS, fixed in 4%

PFA, and stained with crystal violet. The dye was extracted with 10% acetic

acid, and absorbance at 595 nm was determined.

Xenografts

13 106 TB13602 cells were mixed with Matrigel and injected into the flanks of

NCR nude mice. Tumor growth was measured after 14 days and the volume

calculated using the formula 0.5 3 L 3 W 3 H.

Statistical Analysis

In vitro data were analyzed using unpaired Student’s t test. Values of p < 0.05

were considered statistically significant. *p < 0.05; **p < 0.01; ***p < 0.001. The

mean ± SE of three or more independent experiments performed in triplicates

is reported.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, five

figures, and one table and can be found with this article online at doi:10.

1016/j.cell.2011.09.032.
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