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Using small sets of ancestry informative markers (AIMs) constitutes a cost-effective
method to accurately estimate the ancestry proportions of individuals. This study aimed
to generate a small and effective number of AIMs from ∼60 K single nucleotide
polymorphism (SNP) data of porcine and estimate three ancestry proportions [East
China pig (ECHP), South China pig (SCHP), and European commercial pig (EUCP)] from
Asian breeds and European domestic breeds. A total of 186 samples of 10 pure breeds
were divided into three groups: ECHP, SCHP, and EUCP. Using these samples and
a one-vs.-rest SVM classifier, we found that using only seven AIMs could completely
separate the three groups. Subsequently, we utilized supervised ADMIXTURE to
calculate ancestry proportions and found that the 129 AIMs performed well on ancestry
estimates when pseudo admixed individuals were used. Furthermore, another 969
samples of 61 populations were applied to evaluate the performance of the 129 AIMs.
We also observed that the 129 AIMs were highly correlated with estimates using
∼60 K SNP data for three ancestry components: ECHP (Pearson correlation coefficient
(r) = 0.94), SCHP (r = 0.94), and EUCP (r = 0.99). Our results provided an example of
using a small number of pig AIMs for classifications and estimating ancestry proportions
with high accuracy and in a cost-effective manner.

Keywords: ancestry informative markers, FST, classification, pig, ancestry proportion

INTRODUCTION

Autosomal single-nucleotide polymorphism (SNP) and insertion-deletion (InDel) are widely
utilized for human ancestry inference and population assignment (Bauchet et al., 2007; Tian
et al., 2009; Sun et al., 2016). Ancestry informative markers (AIMs) are genetic markers of
frequency differences between populations (Shriver et al., 2003). Multiple statistics have been
used to obtain AIMs, including F statistics (FST), absolute allele frequency differences (δ),
informativeness for assignment measure (In), and principal component loading scores (Rosenberg
et al., 2003; Zhang et al., 2009; Ding et al., 2011; vonHoldt et al., 2016; Barbosa et al., 2017;
Peterson et al., 2017). Instead of using whole genome markers, AIMs were considered to
be sufficiently accurate for ancestry inference for limited population size. Consequently, this
constitutes an economical way to screen and analyze thousands of samples. Santos et al. (2016)
reported that 192 AIMs selected from ∼370 K SNP data can be used to accurately estimate
the ancestry proportions of three major populations in Brazil. Li et al. (2016) developed a
panel of 74 AIMs to infer the ancestry proportions of 500 test individuals from 11 populations.
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Due to the high resolution of AIMs, a 23-AIMs panel
generated by Zeng et al. (2016). distinguished four major
American populations, and correctly assigned ancestry for nine
additional populations (Zeng et al., 2016).

For animal population genetics, AIMs have been successfully
applied to identify breeds of different varieties and to evaluate
genetic compositions in hybrid populations (Dimauro et al.,
2015; Bouchemousse et al., 2016). Bertolini et al. (2017) found
that 96 AIMs performed well in discriminating six dairy cattle
breeds. In another study, 63 AIMs selected from 427 canids
were utilized to assess genetic admixture in coyotes (Monzon
et al., 2014). Recently, 74 AIMs were used to calculate ancestry
proportions in crossbred sheep (Awassi with two native breeds
in Ethiopia), and it was found that different admixture levels of
Awassi significantly affected the traits of lamb growth and ewe
reproduction (Getachew et al., 2017).

The pigs (Sus scrofa) diverged into European and Asian
wild boars during mid-Pleistocene (1.2–0.8 million years ago)
(Larson et al., 2005; Frantz et al., 2013). Pig domestication in
China occurred ∼9,000 years ago (Larson et al., 2005). It has
been documented that Chinese domestic pigs were divided into
six types according to the region of dwelling and phenotype
characteristics (I–North China, II–Lower Changjiang Basin, III–
Central China, IV–South China, V–Southwest, and VI–Plateau)
(Li et al., 2004; Fang et al., 2005). In a recent study, Yang et al.
(2017). tracked the ancestries of various Chinese breeds and
identified two major distinct ancestries, which are East China
(e.g., Meishan and JinHua) and South China (e.g., Luchuan
and Bamaxiang) origin. In addition, genomic introgression from
European commercial breeds to Chinese indigenous pigs has also
been reported (Ai et al., 2013; Bosse et al., 2014; Zhu et al., 2017),
making the genetic compositions of modern Chinese pigs even
more complicated.

Although it has been widely applied in other animals, and
it is of great importance in specific application scenarios,
including market surveillance and genetic resource protection,
no study currently exists that specifically addresses the problem
of efficiently using AIMs for distinguishing pig breeds or for
estimating ancestry proportions. Here, using ∼60 K pig SNP
chip data, we searched for the optimal number of AIMs for
distinguishing pigs of East China, South China, or European
origin. Based on 129 selected AIMs, we estimated ancestry
proportions of the above origins for other Chinese pigs.
We suggested that AIMs selected from unadmixed reference
populations could be used to accurately estimate ancestry
proportions in hybrid populations. Our results provide a useful
example of utilizing AIMs for breed classification and ancestry
estimation in pigs.

MATERIALS AND METHODS

Data Collection and Quality Control
Genotyping data of 2,113 samples were retrieved from the
Dryad Digital Repository1. Only samples from Asian breeds,

1http://dx.doi.org/10.5061/dryad.30tk6

and European breeds were used in this study (a total of
1,157 samples from 71 populations, details in Supplementary
Table S1). Samples and SNPs were excluded if the following
criteria were met: (1) an individual contained more than 10%
missing genotypes; (2) SNPs with a call rate lower than 95%;
(3) SNPs with a minor allele frequency less than 0.05; (4) SNPs
that were located on sex chromosomes; and (5) SNPs were
not biallelic. The missing genotypes were subsequently imputed
by using BEAGLE (version 3.3.2) (Browning and Browning,
2007). Finally, 45,562 SNPs and 1,155 samples remained. The
1,155 samples were then split into two datasets. For the
reference set, 186 samples were chosen from 10 representative
populations of the three major ancestry groups: East China pig
(ECHP), South China pig (SCHP), and European commercial
pig (EUCP). The 10 populations were selected based on the
fact that there was no obvious admixture between populations
belonging to the ECHP or SCHP group, according to a report
from Yang et al. (2017). This data set is summarized in Table 1.
The test dataset contained the remaining 969 samples from
61 populations (details in Supplementary Table S2). Considering
the convenience of practical application, the genotype data of the
test dataset were directly extracted from the raw data without
phasing or imputation.

Population Structure
Principal component analysis (PCA) was performed on ∼60 K
chip data using SMARTPCA (version 6.1.4) in the reference
set (Patterson et al., 2006). To confirm the unadmixed status,
the unsupervised ADMIXTURE (version 1.23) (Alexander et al.,
2009) was utilized to compute the ancestry proportions of
samples from the reference set with the number of ancestry
(K) set from K = 3 through K = 15. The ChromoPainter
v2 (Lawson et al., 2012) linked model was also chosen to
explore similarity/dissimilarity for individuals in the reference
set. In detail, the recombination map file was generated using
the script makeuniformrecfile.pl provided by fineSTRUCTURE
(version 2.1.1) (Lawson et al., 2012). By utilizing a hidden
Markov model profile, ChromoPainter v2 infers haplotypes of
“donor” and “recipient” to create a co-ancestry matrix. Initially,
20 expectation-maximization steps were used to estimate the
mutation and switch rate on 1/5 random sampling members

TABLE 1 | Pig breeds information in the reference set.

Group Subpopulation Abbreviation Number

South China pig (SCHP) China_Bamaxiang CNBX 16

China_Congjiangxiang CNCJ 16

China_Guangdongdahuabai CNDH 16

China_Luchuan CNLU 18

East China pig (ECHP) China_Erhualian CNEH 20

China_Jinhua CNJH 20

China_Meishan CNMS 20

European Commercial
pig (EUCP)

Duroc DUR2 20

Pietrain PIT1 20

Landrace LDR1 20
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from all individuals with all autosomes considered. The inferred
mutation and switch rates for each chromosome were then
averaged. Subsequently, with estimated mutation, switch rate
and other default values, ChromoPainter v2 was again used
to generate the co-ancestry matrix for all individuals. Finally,
the MCMC algorithm implemented in fineSTRUCTURE was
employed to hierarchically cluster individuals with a burn-in and
runtime of 1,000,000 and 6,000,000 iterations, respectively.

Selection of AIMs
All 186 samples in the reference dataset were used to compute FST
and In. Candidate SNPs were selected from the AIMs algorithm
selector that was implemented in AIMs_generator.py from
ANTseq pipeline2. Specifically, we firstly excluded SNPs in high-
linkage disequilibrium (LD) by selecting only one SNP in a strong
LD (r2 > 0.3) region and within 500 kb distance. Within each
group, SNPs that exhibited heterogeneous frequencies among
populations were further excluded based on a Chi-squared test
(Galanter et al., 2012). Secondly, FST and In were computed for
each of the three paired groups : ECHP vs. EUCP, SCHP vs.
EUCP, and ECHP vs. SCHP (Rosenberg et al., 2003).

Group Classification With Minimum AIMs
Using the reference dataset, we first compared the discriminatory
power of the AIMs selected by FST or In. Binary classification
for the three paired groups were performed separately. For
each paired group, we started by selecting the top two through
top 30 AIMs, with an increment of one AIM. Samples in
the corresponding paired group were randomly split into two
proportions: 75% for training, 25% for testing, and this operation
was repeated 50 times. GridSearchCV implemented in the
Scikit-learn (version 0.18) package was then used to determine
the optimal parameters for a support vector machine (SVM)
classifier (Da Mota et al., 2014). The parameters for SVM are
summarized in Supplementary Table S3. For the model with
optimal parameters, the accuracy of classification was evaluated
by the mean of the Matthews correlation coefficient (MMCC) for
50 repeats as follows:

MMCC =
[ 50∑

i=1

TPi×TNi−FPi×FNi√
(TNi+FNi)(TPi+FPi)(TPi+FNi)(TNi+FPi)

]
×

1
50

where TNi and FNi are the number of true negatives and false
negatives, and TPi and FPi are the number of true positives and
false positives, for each run.

To determine the minimum number of AIMs for
distinguishing ECHP, SCHP, and EUCP simultaneously,
a multiclass approach of one-vs.-rest SVM was employed on
reference dataset (Hong and Cho, 2008). Similarly, we began
by selecting the top two through top 200 AIMs from each of
the paired groups, with an increment of one AIM, resulting in
199 AIM sets in total. In each set, AIMs selected from the three
paired groups were merged and duplicated AIMs were removed
(Supplementary Table S4). Since MMCC was not designed for
evaluating the accuracy of multiclass classification, confusion
matrix, Cohen’s kappa statistic and balanced error rate were used

2https://github.com/boxiangliu/ANTseq

instead to evaluate the classification accuracy. Higher Cohen’s
kappa but lower balanced error rate indicated higher accurate
classification. We again utilized GridSearchCV to estimate the
best parameters for one-vs.-rest SVM, the parameters of which
are summarized in Supplementary Table S3. We also generated
random SNP sets of equal number from the whole genome for
comparison of discriminatory power to the selected AIMs.

Ancestry Inference With Optimal AIMs
AIMs have been widely used to estimate ancestry proportions
in hybrid populations, even in cases in which they were
selected from unadmixed populations. Based on selected AIMs,
to estimate ancestry proportions of possible admixed pig
populations, we employed a strategy that was similar to that
used in a previous study by Pardo-Seco et al. (2014). We first
generated pseudo admixed individuals by randomly selecting
genotypes of selected AIMs from samples in the reference data
set with equal proportions. Therefore, the expected ancestry
proportions of these pseudo admixed individuals were 1/3
(∼0.3333) from each group (ECHP, SCHP, and EUCP). For each
of the 199 AIM sets generated from the above, 1,000 simulations
were performed. Supervised ADMIXTURE (K = 3) was used
to estimate the ancestry proportions. The performances were
evaluated by the mean and the coefficient of variation (CV)
of the estimated ancestry proportions. The CV of estimated
ancestry proportions against the number of AIMs was fitted by
the Curve Expert 1.4 program3. The optimal number of AIMs
was determined by selecting the slope of the tangent threshold
of the curve of which stable performance was observed beyond
that point. To add an additional validation, we simulated pseudo
admixed individuals with random ancestry proportions using the
determined optimal number of AIMs. The ancestry proportions
of ECHP, SCHP, and EUCP were randomly assigned with a
minimum proportion set to 10%.

On the basis of the AIMs selected in the last step, we
performed ancestry inference for the 969 individuals in the
test dataset by supervised ADMIXTURE. The performance was
evaluated by Pearson correlation coefficient between the genome-
wide SNPs and the optimal number of AIMs.

RESULTS

Population Structure of Reference
Populations
Populations in the reference set were supposed to be least
admixed. We did observe that ECHP, SCHP, and EUCP were
well separated in a principal component plot (Figure 1A).
The genome-wide FST distribution (Figure 1B) showed higher
differentiation both between ECHP vs. EUCP (mean = 0.2197,
95% CI 0.0006–0.7267) and SCHP vs. EUCP (mean = 0.2153,
95% CI 0.0005–0.7570), while the differentiation between ECHP
vs. SCHP (mean = 0.0588, 95% CI 0–0.3342) was noticeably
less pronounced. By using ADMIXTURE, all breeds were well
divided into anticipated groups (Figure 1C) when K = 3, in

3http://www.curveexpert.net
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FIGURE 1 | Population structure of 10 breeds in the reference data set. (A) Principal component analysis (PCA) of ∼60 K chip data. (B) The genome-wide FST

distribution for the three paired groups: ECHP vs. EUCP, SCHP vs. EUCP and ECHP vs. SCHP. The red vertical line represents the mean of FST distribution. The
dashed vertical lines represent 2.5 and 97.5% percentile of FST distribution. (C) ADMIXTURE clustering of ∼60 K chip data when K = 3–12. CNBX,
China_Bamaxiang; CNCJ, China_Congjiangxiang; CNLU, China_Luchuan; CNDH, China_Guangdongdahuabai; CNJH, China_Jinhua; CNEH, China_Erhualian;
CNMS, China_Meishan; DUR2, Duroc2; PIT1, Pietrain1; LDR1, Landrace1. Color codes for large braces are as follows, green: East China pig (ECHP); red: South
China pig (SCHP); blue: European commercial pig (EUCP).

accordance with the previous study by Yang et al. (2017). When
K = 10, 10 populations could be separated clearly, consistent
with our expectation that the 10 populations were least admixed
(Supplementary Figure S1).

For further quantification, the ChromoPainter v2 and
fineSTRUCTURE programs were employed to check the
relationship among these breeds considering LD. As shown
in the coancestry heatmap (Figure 2), individuals within
each group exhibited a homogeneous pattern, and those
from the same group shared more genetic chunks than from
other groups. In particular, the EUCP had a negligible degree
of coancestry with individuals from Chinese indigenous
breeds. The sample from ECHP and SCHP showed a
higher degree of coancestry, but individuals from the

same group still tended to cluster together more than
between groups. In summary, the results suggested that
the samples in the reference dataset exhibited a negligible
level of admixture.

Group Classification Using AIMs
In order to build an effective set of AIMs, we firstly compared
the performance of FST statistics and In statistics. For a paired
group of ECHP vs. EUCP and SCHP vs. EUCP, a minimum
of two AIMs were found to be sufficient to result in a perfect
separation (MMCC = 1), either by selecting the top FST or
by top In statistics (Supplementary Figure S2). However, to
separate ECHP vs. SCHP, at least four AIMs were required
by using FST, or at least five were required by using In. For
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FIGURE 2 | fineSTRUCTURE analysis in the reference dataset. The heatmap shows the number of shared genetic chunks copied from a donor genome (column) to
a recipient genome (row). CNBX, China_Bamaxiang; CNCJ, China_Congjiangxiang; CNLU, China_Luchuan; CNDH, China_Guangdongdahuabai; CNJH,
China_Jinhua; CNEH, China_Erhualian; CNMS, China_Meishan; DUR2, Duroc2; PIT1, Pietrain1; LDR1, Landrace1. Color codes are as follows, green: East China pig
(ECHP); red: South China pig (SCHP); blue: European commercial pig (EUCP).

AIMs selected by FST or In, we found that informative AIMs
selected by In were largely overlapped with AIMs selected
by FST, indicating that FST is at least as informative as In.
Therefore, the following analyses were based only on AIMs
selected by FST.

Next, we attempted to identify the number of AIMs which
could be used to separate ECHP, SCHP and EUCP simultaneously
using a multiclass approach. As described in Materials and
Methods, top ranked two to 200 AIMs were sequentially
selected from ECHP vs. EUCP, SCHP vs. EUCP and ECHP

vs. SCHP, respectively, resulting in 199 AIM sets of increasing
number (Supplementary Table S4). AIMs in each set were
merged and deduplicated. For example, for the largest set, 171
out of 200 AIMs were shared between ECHP vs. EUCP and
SCHP vs. EUCP (Supplementary Figure S3), 12 out of 200
AIMs were the shared between SCHP vs. EUCP and ECHP
vs. SCHP, and 14 out of 200 AIMs were shared between
ECHP vs. EUCP and ECHP vs. SCHP. All 199 AIM sets were
fed to a one-vs.-rest SVM classifier. As show in Figure 3
and Supplementary Table S5, seven AIMs were sufficient
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FIGURE 3 | Confusion matrices for the one-vs.-rest SVM classifier. (A) The performance of four AIMs. (B) The performance of seven AIMs. (C) The performance of
four random markers that is sampled from whole genome data. (D) The performance of seven random markers.

to completely separate ECHP, SCHP and EUCP with the
Cohen’s kappa = 1 and balanced error rate = 0. The detailed
information of seven AIMs were summarized in Table 2 and
Supplementary Table S7.

Accurate Ancestry Proportion
Estimation Using AIMs
AIMs selected from unadmixed populations were reported to be
successfully applied to estimate ancestry proportions in admixed
populations (Lee et al., 2012; Maples et al., 2013). To validate
practicability in our study, we performed data simulation. If the
study is practical, we should observe high consistency between
simulated and estimated ancestry proportions. For each AIM
set, the supervised ADMIXTURE was used to calculate ancestry
proportions in 1,000 simulations. For each simulation, genotype
of 60 samples selected from ECHP, SCHP and EUCP were
randomly mixed for each AIM.

As shown in Figures 4A,B, when 80 or fewer AIMs were
included, large differences between the mean of estimated and
expected value (∼0.3333) were observed. For example, the seven

AIMs worked perfectly for classification were not sufficient to
infer the ancestry proportions accurately: ECHP (mean = 0.2994,
coefficient of variation (CV) = 0.8450), SCHP (mean = 0.3909,
CV = 0.7783) and EUCP (mean = 0.3097, CV = 0.9895). However,
by including top 82 AIMs or more, the estimated proportions
gradually converged to the expected values (Figure 4A). Same
tendency for the CV plot in which the CV decreased as the
number of AIMs increased (Figure 4B).

In order to determine the optimal AIM set, we fitted
the CV curves in Figure 4B with a reciprocal logarithmic
function (Supplementary Figure S4) for AIMs between 82 and
403. Since the tangent to the curve gets infinitely close to
zero, we determined an arbitrary threshold of –0.0004, which
corresponds to the set of 129 AIMs, by considering both the
stability of the CV value and the genotyping cost for SNPs
(Supplementary Table S6). The AIM set of 129 performed
well in ancestry inference for simulated samples (Figure 5),
which resulted in ECHP: mean = 0.3310, standard deviation
(std) = 0.0772; SCHP: mean = 0.3356, std = 0.0751; and
EUCP: mean = 0.3334, std = 0.0394. We also observed that the
performance of 129 AIMs set showed very limited difference to
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TABLE 2 | The pairwise FST values for the 129 AIMs.

ECHP vs. SCHP vs. ECHP vs.

SNP Chr Position EUCP EUCP SCHP

ALGA0003690 1 64094344 0.4724 0.0300 0.3069

MARC0023378 1 148309548 0.9672 1 0.0084

INRA0004282 1 149824800 0.9672 1 0.0084

DRGA0001542 1 150801717 0.9672 0.9556 0.0005

INRA0004312 1 152175324 0.9672 1 0.0084

H3GA0002811 1 153144281 0.9508 0.9835 0.0084

INRA0004460 1 158429254 0.9028 0.9355 0.0084

ASGA0004738 1 159450284 0.9028 0.9355 0.0084

MARC0036323 1 162068596 0.9028 0.9355 0.0084

H3GA0002947 1 162610557 0.9508 0.9835 0.0084

M1GA0001158 1 163303972 0.9672 1 0.0084

ASGA0005014 1 179090814 0.0534 0.9069 0.6833

DRGA0001670 1 192768198 0.7230 0.9835 0.0811

DRGA0001766 1 201005516 0.0390 0.5438 0.4165

INRA0005593 1 211778061 0.9355 1 0.0169

INRA0005652 1 214740742 0.9347 0.9512 0.0042

ALGA0007467 1 215925031 0.9347 0.9512 0.0042

ALGA0007539 1 220517767 0.1429 0.0826 0.3608

M1GA0002066 1 307474784 0.3636 0.0154 0.3125

H3GA0005443 1 311685793 0.9185 0.9512 0.0084

ASGA0102470 2 2261977 0.9355 0.9355 0

ASGA0008848 2 7823419 0.0031 0.5319 0.5905

ASGA0091359 2 96158022 0.0084 0.3750 0.3460

ASGA0012212 2 140996142 0.0018 0.4149 0.3737

ALGA0016543 2 145257971 0.2061 0.0234 0.3266

MARC0065978 3 55717402 1 0.9412 0.0154

ALGA0019771 3 77636015 0 0.4293 0.4293

DIAS0003766 3 81986256 0.9512 0.9512 0

ALGA0107390 3 86085644 0.9355 0.9355 0

ASGA0101711 3 123638149 0.9344 0.9373 0

ASGA0016597 3 132275049 0.0573 0.6011 0.3479

ALGA0024245 4 30874523 0.0003 0.3275 0.3426

ASGA0019402 4 41300090 1 0.9702 0.0076

DRGA0004757 4 43615316 0.9512 0.9512 0

ALGA0025201 4 61401615 0.0061 0.4776 0.3969

INRA0014351 4 66793036 0.9512 1 0.0127

MARC0090092 4 68409038 0.9512 1 0.0127

INRA0014612 4 73495852 1 1 0

ASGA0021073 4 103804488 0.0390 0.4081 0.5349

ALGA0031043 5 19526692 0.1747 0.0480 0.3044

ALGA0031742 5 39327879 0.9512 0.9512 0

DRGA0005727 5 40915894 0.9512 0.4550 0.2000

INRA0019276 5 42724575 0.9671 0.9671 0

ASGA0025483 5 44622629 0.9671 0.9671 0

DRGA0005762 5 45252255 0.9671 0.9671 0

DRGA0005767 5 46381993 1 1 0

ALGA0031838 5 47243385 1 1 0

MARC0046863 5 48236817 1 1 0

DRGA0005792 5 49040715 1 1 0

ALGA0031894 5 50991368 0.9671 0.9671 0

INRA0019346 5 52798149 1 1 0

ALGA0032094 5 62157042 0.0260 0.4682 0.3097

(Continued)

TABLE 2 | Continued

ECHP vs. SCHP vs. ECHP vs.

SNP Chr Position EUCP EUCP SCHP

ALGA0108031 5 67710315 0.1429 0.0491 0.3005

ALGA0032500 5 68352730 0.4423 0.0205 0.3048

ASGA0026083 5 69584032 0.3413 0 0.3461

INRA0020365 5 96352161 1 0.9702 0.0076

ALGA0037079 6 133726563 0.9355 0.9355 0

ALGA0117693 6 148742719 0.9185 0.9512 0.0084

ASGA0094022 6 151217323 0.0784 0.3521 0.6331

MARC0041948 6 152894649 0.3793 0 0.3793

MARC0115216 7 3195217 0.9348 0.9835 0.0127

DBKK0000285 7 60252514 0.4906 0 0.4906

H3GA0021983 7 67646165 0.3886 0.0010 0.3767

ALGA0042537 7 77009237 0.0114 0.4408 0.3630

DRGA0007820 7 77973037 0.0402 0.5930 0.4218

DIAS0000146 7 109783926 0.9512 0.9068 0.0115

ALGA0045522 7 127332840 0.6741 0.0977 0.3392

H3GA0024530 8 23601551 0.1984 0.0820 0.4514

BGIS0004952 8 39300733 0.9512 0.9512 0

ASGA0038742 8 41242759 0.9835 0.9835 0

ALGA0047876 8 52213568 0.0084 0.4505 0.4206

H3GA0024898 8 61863927 1 0.5715 0.1579

ALGA0047992 8 65489064 0.0169 0.5903 0.5294

INRA0029873 8 69998730 0.0014 0.3115 0.3256

ALGA0048179 8 77021275 0.9835 0.9247 0.0154

ALGA0048253 8 78671695 1 0.9850 0.0038

ASGA0039683 8 121829327 0.9671 0.9671 0

ASGA0039832 8 130909240 0.9670 0.9835 0.0042

INRA0030531 8 131517760 0.9835 1 0.0042

H3GA0025494 8 135031919 0.0057 0.2447 0.3073

ASGA0095368 8 145709748 0.0455 0.2561 0.4043

H3GA0055769 9 12292138 0.1918 0.0313 0.3512

ALGA0119045 9 15055604 0.0292 0.4774 0.3070

BGIS0007566 9 53579054 0.9672 0.9850 0.0017

ASGA0043529 9 66808115 0.0057 0.2435 0.3044

ASGA0096819 9 73486663 0.0042 0.5017 0.5172

ASGA0043850 9 85054037 0.1853 0.0811 0.4384

ALGA0054899 9 129924803 0.9190 0.9685 0.0083

H3GA0028160 9 130830299 0.9355 0.9805 0.0083

H3GA0053792 10 13926830 0.0014 0.3924 0.3550

ALGA0057773 10 25842467 0.2107 0.0296 0.3532

M1GA0014504 11 55295 1 0.9556 0.0115

INRA0036515 11 55728615 0.7857 0.1899 0.3166

M1GA0016423 12 23116412 0.9671 0.9671 0

MARC0072483 12 46436962 0.2169 0.1199 0.5465

ASGA0104770 12 60372315 0.0883 0.1469 0.3674

MARC0010739 13 40671308 0.9512 0.5537 0.1429

ALGA0069709 13 42825042 0.9512 0.9068 0.0115

MARC0094198 13 43808238 1 0.9556 0.0115

ALGA0114810 13 49676914 0.4135 0.0134 0.3055

ASGA0057953 13 71998014 0.0526 0.1905 0.3333

ALGA0070726 13 73168055 0.5376 0.0017 0.5543

INRA0040831 13 115237462 0.9348 0.9835 0.0127

INRA0040844 13 117860412 0.9348 0.9835 0.0127

(Continued)
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TABLE 2 | Continued

ECHP vs. SCHP vs. ECHP vs.

SNP Chr Position EUCP EUCP SCHP

INRA0040883 13 124139277 0.9185 0.9512 0.0084

ALGA0076648 14 30849871 0.0547 0.5746 0.3880

DBMA0000255 14 131114363 0.5385 0.0512 0.3135

M1GA0019170 14 135148446 0.9512 0.9512 0

ALGA0113804 15 2724715 0.1694 0.0563 0.3810

INRA0048834 15 14037549 0.3636 0.0031 0.3135

ALGA0084945 15 40545702 0.0069 0.4234 0.3399

ALGA0088237 15 148849949 0.8321 0.0550 0.5715

MARC0040430 16 2142400 0.2813 0.0230 0.4293

ASGA0071886 16 2745009 0.1903 0.0568 0.3759

ASGA0072342 16 14465203 0.1594 0.0716 0.3679

H3GA0046303 16 24940106 0.0899 0.8021 0.4683

ALGA0090172 16 35245008 0.0344 0.1554 0.3116

MARC0080217 16 58476421 0.9835 0.9702 0.0010

ALGA0094674 17 39199731 0.0243 0.2865 0.4208

ALGA0095308 17 50025811 0.9355 0.9355 0

MARC0041179 18 617438 0.2592 0.8749 0.3044

ALGA0097196 18 16559678 1 1 0

ASGA0079061 18 17817003 0.6083 0.0472 0.3757

ASGA0079737 18 44927369 0.9671 0.9671 0

DBWU0000187 18 46589140 0.0006 0.2977 0.3202

M1GA0023257 18 48941351 0.9512 0.9068 0.0115

ALGA0098723 18 54367433 0.9348 0.9835 0.0127

ALGA0098742 18 55295182 0.9672 1 0.0084

ASGA0080420 18 58822946 0.9355 0.9556 0.0010

The information of the seven AIMs which could completely separate ECHP, SCHP
and EUCP are indicated in bold font. Chr, chromosome.

that of 403 AIMs set, suggesting the 129 AIMs set was optimal
(Supplementary Table S6).

Considering the practicability of the 129 AIMs set, we next
simulated pseudo admixed individuals with unequal random
ancestry proportions using the same AIMs. we first produced 10
random ancestry proportions for each three groups, and then
ran 1,000 simulations on each three ancestry proportions. For
each simulation, 60 pseudo admixed individuals were generated.
As shown in Table 3, the 129 AIMs worked very well, even for
samples of random ancestry proportions.

As anticipated, using the 129 AIMs (Table 2 and
Supplementary Table S7), PCA demonstrated that 10
populations were clearly divided into three corresponding
groups (Supplementary Figure S5). Interestingly, in comparison
to Figure 1A, substructure within populations at each group
was less obvious.

Ancestry Proportion Estimation
for the Test Dataset
It has been reported that some Asian pig breeds were admixed
with European domestic breeds, and especially with commercial
breeds. For instance, eight Asian breeds (Korean local breed
(KPKO), Thailand local breed (THCD), China Lichahei (CNLC),
China Sutai (CNST), China Kele (CNKL), China Guanling

(CNGU), China Leanhua (CNLA), and China Minzhu (CNMZ))
have been reported to be introgressed by at least 20% from
European ancestry (Yang et al., 2017). In order to symmetrically
identify and quantify the introgression, we utilized the 129
selected AIMs to estimate the ancestry compositions of another
969 samples from 61 populations that are possibly admixed at
least to a certain extent.

Overall, by using the supervised ADMIXTURE, we found
a strong correlation (Figure 6) between ancestry proportions
calculated by 129 AIMs and those calculated by all ∼60 K chip
data at the individual level. Bland–Altman plot also showed
agreements on ancestry proportion estimated between genome-
wide and 129 AIMs data (Figure 7). For breeds that were known
to be introgressed from EUCP, we obtained reasonable results. As
shown in Figure 8 and Supplementary Table S8, the estimation
of the mean of three ancestry proportions in the CNMZ
population by using 129 AIMs (ECHP:0.5325, SCHP:0.2456,
EUCP:0.2219) was similar to the estimation of the mean of
three ancestry proportions in the CNMZ population by using
∼60 K SNP data (ECHP:0.6457, SCHP:0.1291, EUCP:0.2252).
The LargeWhite-Meishan crossbreed (CSLM), which has been
documented as an F1 generation from LargeWhite × MeiShan,
our ancestry proportion estimation from the 129 AIMs
(ECHP:0.4992, SCHP:0.0455, EUCP:0.4553) was consistent with
the expectation, and similar to the result from ∼60 K SNP data
(ECHP:0.5128, SCHP:0.0020, EUCP:0.4852). In another case,
Russia Minisibs (RUMS), which has been reported to possess
approximately half European ancestry, we also obtained a high
level of EUCP ancestry using either 129 AIMs (ECHP:0.1428,
SCHP:0.4780, EUCP:0.3791) or ∼60 K SNP data (ECHP:0,
SCHP:0.5349, EUCP:0.4651).

DISCUSSION

Since the 19th century, pig breeders in the West have used
Chinese pigs to hybridize with European pigs to improve their
breeding stock (Groenen, 2016). Bianco et al. (2015) found
that European domestic pigs have 20% genomic introgression
from Asian pigs. On the other hand, Yang et al. (2017)
reported that European pigs contributed at least 20% to
eight Asian breeds. In recent years, evidence has been
presented that local Chinese farmers cross local pigs with
imported commercial pigs (Berthouly-Salazar et al., 2012).
Introgression introduces new genetic materials, which might
help to improve certain characteristics, especially production
performance. Unfortunately, introgression, in either a narrow
sense, as an admixture with foreign breeds, or in a broad sense,
as an admixture with breeds from different areas within a nation,
also introduces “genetic pollution” which is hardly avoidable.
For example, in recent study, Zhang et al. found that almost
all Chinese indigenous chickens have gene introgression from
commercial broiler (Zhang et al., 2019).

Since the indigenous pork are sold at higher price than that
of European commercial pigs in China, false propaganda, shoddy
phenomenon on the market began to rise. Significant attention
has been paid to the issue of pork adulteration, however, at this
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FIGURE 4 | Ancestry inference on simulated individuals from the 199 AIM sets. In each set, 1,000 simulations were performed by a python script and the ancestries
were inferred by supervised ADMIXTURE. Vertical dashed lines represent four AIM sets: seven AIMs,82 AIMs, 129 AIMs and 403 AIMs. (A) The mean of ancestry
proportions for the three groups: ECHP (green), SCHP (red) and EUCP (blue). The black horizontal line represents the expected value (∼0.3333) of each ancestry.
(B) The coefficient of variation (CV) of ancestry proportions for the three groups.

FIGURE 5 | Ancestry inference on simulated individuals from 129 AIMs. The black horizontal line represents the expected value (∼0.3333) of each ancestry. Color
codes are as follows, green: ECHP; red: SCHP; blue: EUCP.
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TABLE 3 | Simulation of random ancestry proportions using the 129 AIMs.

ECHP SCHP EUCP

expectation mean 95% CI expectation mean 95% CI expectation mean 95% CI

1 0.2083 0.2015 0.0495–0.3528 0.4333 0.4393 0.2914–0.5864 0.3583 0.3585 0.2818–0.4366

2 0.1583 0.1504 0.0000–0.2954 0.3000 0.3076 0.1652–0.4486 0.5417 0.5420 0.4617–0.6210

3 0.2500 0.2440 0.0968–0.3925 0.6000 0.6056 0.4604–0.7486 0.1500 0.1501 0.0924–0.2119

4 0.7333 0.7344 0.6049–0.8512 0.1167 0.1151 0.0000–0.2365 0.1500 0.1501 0.0920–0.2116

5 0.5083 0.5121 0.3612–0.6553 0.3750 0.3719 0.2283–0.5173 0.1167 0.1167 0.0643–0.1735

6 0.3500 0.3521 0.2009–0.5014 0.4667 0.4640 0.3153–0.6123 0.1833 0.1834 0.1210–0.2489

7 0.4000 0.4027 0.2509–0.5520 0.4500 0.4466 0.2987–0.5942 0.1500 0.1500 0.0912–0.2135

8 0.2250 0.2184 0.0692–0.3681 0.5333 0.5394 0.3932–0.6839 0.2417 0.2422 0.1729–0.3141

9 0.7083 0.7100 0.5830–0.8284 0.1167 0.1156 0.0000–0.2391 0.1750 0.1749 0.1132–0.2398

10 0.2333 0.2272 0.0818–0.3765 0.6083 0.6145 0.4699–0.7566 0.1583 0.1583 0.0998–0.2228

FIGURE 6 | Pearson correlation between ancestries estimated by 129 AIMs and ∼60 K chip data. (A) Correlation for ECHP ancestry. (B) Correlation for SCHP
ancestry. (C) Correlation for EUCP ancestry.

FIGURE 7 | Bland-Altman plots showing difference between individual ancestry inference. The x-axis represents (A) ECHP, (B) SCHP, and (C) EUCP ancestry
proportion estimated by genome-wide, respectively. The y-axis represents the difference in estimates between genome-wide and 129 AIMs data. The red and blue
dashed lines are mean and 95% confidence intervals, separately.

stage, the work of identification was mostly based on intuitions
and experiences from the customer side (Dai et al., 2009; Kwon
et al., 2017). Fortunately, pig products from the 10 breeds in

our reference set are dominant in China (Bosse et al., 2015;
Gong et al., 2018; Zhao et al., 2018), our method thus constitutes
a promisingly effective way in detection of pork adulteration at
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FIGURE 8 | Ancestry proportions estimated by supervised ADMIXTURE at K = 3. The height of each bar represents three ancestry proportions [ECHP (green), SCHP
(red) and EUCP (blue)] in one population. The mean proportion of each ancestry in RUMS and CSLM is highlighted with pie charts, respectively.

DNA level in market surveillance. From the view of a researcher,
in genome-wide association studies, different genetic ancestries
between case and control will lead to population stratification.
Therefore, if selecting the samples of similar ancestry proportions
or considering ancestry as covariates in the regression model
to adjust stratification, it would help to reduce false positives
(Qin et al., 2014).

Overall, it is highly important to trace the origin or estimate
genetic ancestry in either the respect of genetic resource pro-
tection, market surveillance or population stratification. AIMs
provides a cost-effective approach compared to using whole-
genome SNPs, and thus is very suitable for large-volume testing.

In the present study, we found that as few as two AIMs are
sufficient to distinguish Chinese pigs from European commercial
pigs, and 10 pure breeds could be accurately assigned to three
corresponding groups (ECHP, SCHP and EUCP) by using as
few as seven AIMs. Through data simulations, we demonstrated
that the AIMs selected from unadmixed individuals can
also be successfully applied to estimate ancestry proportions
for admixed individuals. We further developed a panel of
129 AIMs to infer ancestry proportions in possibly admixed
individuals effectively. Considering the flexibility, reliability and
serviceability, Agena MassARRAY platform would be currently
the best choice for genotyping for the 129 AIMs set. However,
for very large-volume testing, customized low-density SNP chip
or multiplex PCR-based next-generation sequencing would be
more cost-effective.

Our work provided a useful example of using a small number
of AIMs for classifications and estimating ancestry proportions.
Efforts can still be made to optimize the AIMs to a minimum

number if necessary. For example, among the 129 AIMs, those
representing the differences between EUCP and ECHP or SCHP
could possibly be reduced. Or, to include more AIMs to increase
the power of discrimination between ECHP and SCHP.

It is worth noting that one of the important prerequisites
to obtain effective AIMs for either classification or ancestry
estimation is to find good reference populations. For example,
Daya et al. (2013) reported a panel of 96 AIMs could be used
to infer the ancestry proportions for South African Colored
(SAC) population, by using representative populations. However,
these markers did not perform well in the South Asian and
East Asian ancestries inference. In our study, 10 pure pig
breeds from three groups (ECHP, SCHP and EUCP) are
chosen as reference populations. There are several reasons why
we chose these breeds. Firstly, many European commercial
pigs or crossbreeding of indigenous breeds with European
commercial breeds become increasingly common in China, so
here major imported European commercial breeds including
Duroc, Pietrain and Landrace were choosing as representative
populations of EUCP. Secondly, the Chinese breeds included
in this study covered two designated ancestry backgrounds. In
Yang et al. study (Yang et al., 2017), China_Erhualian (CNEH),
China_Jinhua (CNJH), China_Meishan (CNMS) pigs are clearly
derived from one ancestry, and China_Bamaxiang (CNBX),
China_Congjiangxiang (CNCJ), China_Guangdongdahuabai
(CNDH) and China_Luchuan (CNLU) are clearly derived
from the other. Admixture analysis showed that they are
least introgressed by EUCP and can be separated from
each other clearly. They together thus constitute the best
reference population available so far, considering both genetic
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pureness and ability to reveal potential admixture in other
Chinese breeds. If more pure breeds are included in the
reference set in future, one could expect more accurate estimation
as well as a wider range of populations where our method
could be applicable.
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